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Abstract

Objective. The accurate localization of electroencephalography (EEG) electrode positions is crucial
for accurate source localization. Recent advancements have proposed alternatives to
labor-intensive, manual methods for spatial localization of the electrodes, employing technologies
such as 3D scanning and laser scanning. These novel approaches often integrate magnetic
resonance imaging (MRI) as part of the pipeline in localizing the electrodes. The limited global
availability of MRI data restricts its use as a standard modality in several clinical scenarios. This
limitation restricts the use of these advanced methods. Approach. In this paper, we present a novel,
versatile approach that utilizes 3D scans to localize EEG electrode positions with high accuracy.
Importantly, while our method can be integrated with MRI data if available, it is specifically
designed to be highly effective even in the absence of MRI, thus expanding the potential for
advanced EEG analysis in various resource-limited settings. Our solution implements a two-tiered
approach involving landmark/fiducials localization and electrode localization, creating an
end-to-end framework. Main results. The efficacy and robustness of our approach have been
validated on an extensive dataset containing over 400 3D scans from 278 subjects. The framework
identifies pre-auricular points and achieves correct electrode positioning accuracy in the range of
85.7% to 91.0%. Additionally, our framework includes a validation tool that permits manual
adjustments and visual validation if required. Significance. This study represents, to the best of the
authors’ knowledge, the first validation of such a method on a substantial dataset, thus ensuring
the robustness and generalizability of our innovative approach. Our findings focus on developing a
solution that facilitates source localization, without the need for MRI, contributing to the critical
discussion on balancing cost effectiveness with methodological accuracy to promote wider
adoption in both research and clinical settings.

1. Introduction mechanisms. Each EEG signal comprises a com-

plex summation of electrical potentials induced by
Electroencephalography (EEG) employs electrodes of neuronal information transmission combined with
high sensitivity to record neuronal electrical activ- various forms of noise and artifacts. Moreover, the
ity at the scalp surface [1], providing crucial insight EEG scalp recordings are also inherently transformed
into the temporal dynamics of the brain’s neuronal by the volume conduction effect [2], i.e. mixing
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the electrical currents that are conducted from their
neuronal origins through organic tissues, including
brain matter, cerebrospinal fluid, skull, and skin. As
a result, the localization capacity of EEG signal pat-
terns in the brain is limited. However, during the past
two decades, considerable effort has been made to
mitigate this challenge. One such innovation is the
biophysical modelling of the head and its conduct-
ivity properties to estimate EEG signals at the neur-
onal (‘source’) level given an individual’s anatomy.
Such techniques are typically referred to as source
reconstruction [3] or electrical source imaging, and
are generally used to solve the inverse problem of
inferring the neural origins of signals observed at the
scalp (‘sensor’) level. Collectively, these developments
are crucial for improving the spatial resolution of
EEG data, and consequently the potential of EEG in
understanding brain function, e.g. in the context of
connectivity [4] and pathology localization [5].

The accuracy with which source level signals can
be estimated is affected by several factors, includ-
ing inherent EEG signal properties such as electrode
density [6], and source and head modeling errors [7].
Importantly, recent developments have paved the way
for constructing head models based on realistic para-
meters, in contrast to analytical solutions such as the
simplified spherical head model, leading to signific-
antly more accurate representation of head geometry
[8]. In particular, the accurate modeling of magnetic
resonance imaging (MRI)-derived variations in skull
thickness across different regions and between indi-
viduals, and the non-spherical shape of the head,
are crucial to obtain high-quality source estimations
[9]. The integration of these elements necessitates a
model that accounts for the sensor positions relative
to the estimated dipoles, which naturally differ among
individuals. Consequently, the precision of individual
electrode placements is crucial for accurate source
localization [10] Evidence has shown that as long as
the accuracy of the sensor-level estimation is within
1 cm, the Brodmann areas can be precisely identified
[11]. Considering the brain’s complex anatomy and
functional wiring, even slight errors in source local-
ization may lead to significant misinterpretations of
functional neuroimaging data.

Previous EEG electrode localization techniques
exhibit considerable variation in equipment cost,
time consumption, the level of user expertise
required, and the degree of automation, from manual
to fully automated systems. The Polhemus FASTRAK
digitizer [ 12], often regarded as the gold standard, has
been widely used since the 1990 s for its precise 3D
spatial registration capabilities. Despite its accuracy,
the Polhemus system is costly (€6000-7000 in 2024),
requires experienced users, demands that the subject
remains still for long periods, and is time-consuming.
An alternative manual method proposed by Le et al
[13] involves measuring a set of points with a cal-
iper, fitting these points to a spherical model, and
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interpolating the rest. This technique also requires
skilled researchers and is labor-intensive for both the
patient and the operator. Recent advancements have
introduced photogrammetry as a viable method for
electrode localization. Photogrammetry generates a
3D model from photos taken at various angles, bal-
ancing accuracy and efficiency [14-16]. However, it
may require multiple cameras, which can be expens-
ive and occupy significant space. Koessler eral [17, 18]
employed industrial 3D scanners for electrode local-
ization, achieving high accuracy but at a high financial
cost. More recent studies have shown that structured-
light 3D scanners can provide efficient and accurate
localization with relatively low-cost equipment [19,
20]. Once a 3D model is captured, several meth-
ods and algorithms are available for labeling elec-
trodes. Manual placement using software such as
Fieldtrip [21] is one approach, although this becomes
highly time-consuming with high-density electrode
caps. To address these challenges, partially automated
algorithmic pipelines have been developed. Typically,
recordings must be manually reviewed to remove
elements of non-interest and perform necessary pre-
processing steps, which is feasible for smaller data-
sets. Some studies still require manual steps, such as
marking fiducials. These pipelines often involve co-
registration with MRI data to enhance the accuracy
of electrode localization and streamline the process
[17-20].

While these innovative methods show consider-
able potential, their validation in large-scale data-
sets is notably still lacking. To rigorously evaluate
performance across inter-individual differences, vari-
ability in data quality, and the overall robustness
of methods, it is essential to use large and diverse
datasets of 3D scans. This approach ensures that
real-world evidence is incorporated into the evalu-
ation. In the current study, we introduce an auto-
mated algorithm for end-to-end localization and
identification of common head landmarks and high-
density EEG electrodes using minimally processed
3D scans as input. The algorithm utilizes segment-
ation, mesh operations and alignment algorithms
in its computational process. The output is not-
ably flexible, designed to be potentially utilized with
or without MRI. Previous work from our group
has demonstrated the utility of combining 3D scan
data and MRI data for head model construction
[4]. Moreover, the developed method is subjected
to the first extensive validation of an electrode loc-
alization algorithm conducted with a large dataset.
This validation is critical for evaluating the applic-
ability and efficiency of the proposed algorithm in
real-world settings. Significantly, this work strives
to balance cost-effectiveness and accuracy in local-
izing head landmarks and EEG electrode positions
without the need for individual MRIs. Consequently,
our approach makes this technique accessible to a
wider range of clinical and research applications,
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particularly in settings where MRI resources are lim-
ited or unavailable.

2. Methods and materials

2.1.3D scan data

2.1.1. Dataset

The 3D dataset was collected at Oslo University
Hospital as part of the AI-Mind project data
collection [22], using a standard operating proced-
ure (SOP) to ensure uniformity across different data
collection sites in the project. The data was generated
from ANT Neuro 126 Electrode EEG Caps in two
sizes: medium (red) and large (blue) [23]. The clinical
dataset comprised 278 individuals aged 60—80, recor-
ded under varying conditions of indoor lighting and
seasons. This diversity introduces a wide range of edge
cases, requiring robustness of the developed method.
Following the SOP, the EEG cap was placed on the
head, and three white markers were positioned at the
landmarks: nasion and left and right pre-auricular
points (L/RPA) for automated localization. Subjects,
seated with faces obscured by latex-gloved hands
and face masks to maintain some anonymity, were
scanned with a Structure Sensor Mark II 3D scanner
mounted on a 7th generation iPad, using the Scanner
XRPro (3.0.3) software, starting from the front and
moving around to capture the 3D scan. The typical
scanning distance from the scanner to the subject was
between 0.5m and 1m. The default settings in the
app Scanner XRPro were used, except for the depth
stream preset, which was set to body. No strict rules
were set on the bounding box in the scanner, but
the minimal requirement was to capture the entire
EEG cap and head. The bounding box could also
include parts of the shoulders. Crucially, the SOP
defines the assumptions essential for the algorithm
and its components to operate as described in this
study. The pipeline requires a mesh with an over-
laid texture, which facilitates the coloring of vertices
essential for electrode localization. For automatic
landmark localization, white markers and frontal ini-
tiation of scans are crucial. However, if that is not
present, the method allows for manual placement.
The electrode localization algorithm depends on
landmarks-either automatically localized or manually
positioned-and a template file of the cap for labeling.
Moreover, scan quality and lighting substantially
affected the solution’s performance. Prior to ana-
lysis, scans exhibiting inadequate data quality were
excluded from the dataset. Exclusion criteria included
missing mesh parts, overlapping ‘ghost’ electrodes,
excessive noise, and generally poor scan quality,
characterized by low resolution or blurry sections.
Additionally, scans that did not comply with the SOP
were excluded, for example, those with hands cover-
ing the frontal electrodes or exhibiting significant
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rotational irregularities. No post-processing was
performed.

The complete dataset consist of 316 scans with
a large (L) cap and 112 scans with a medium (M)
cap. For the development and prototyping of the
algorithm, 12 L cap scans were selected to reflect
the significant variability typical in clinical datasets.
In addition, 12 M cap scans were utilized for con-
tinuous validation to confirm the method’s effic-
acy across both types of scans. This allocation left
304 L cap and 100 M cap scans solely for validation
purposes, which were not used in the development
process. Data acquisition was conducted over mul-
tiple sessions, leading to the repeated appearance of
some individuals in the validation dataset: 176 sub-
jects appeared once, 78 subjects twice, and 24 subjects
three times. However, intra-subject variability, even
when using the same cap, presents a challenge [24].
Consequently, data from each session must be con-
sidered independently to adequately account for this
variability. In some instances, landmarks were either
incorrectly positioned or completely missing, redu-
cing the available scans for validating landmark loc-
alization to a total of 380 scans, from both M and L
caps.

Ethical approval for the study was granted by
the Regional Committees for Medical Research
Ethics (204 084). In this study, only data from the
Norwegian cohort were considered. For the full eth-
ical statement regarding the complete dataset, see the
AI-Mind protocol paper [22]. All adult participants
provided written informed consent to participate in
this study.

2.1.2. Electrode positions templates

The initial template for electrode positions was
obtained from the equipment manufacturer, ANT
Neuro. The PO9 and PO10 electrodes were manu-
ally adjusted by shifting them approximately 1cm
upwards to correct their initial misalignment with the
cap, based on a comparison with standard positions
and real-world electrode placement.

To improve algorithmic accuracy, the difference
between manually localized electrodes and the auto-
mated solution, a revised template was developed
based on the average positions of electrodes from 13 L
cap and 8 M cap 3D scans, excluded from devel-
opment and validation. The positions were manu-
ally localized using the manual adjustments option
in the pipeline. This approach was predicated on the
hypothesis that aligning the template more closely
with the empirical data would enhance algorithm
performance.

2.2. Landmark and electrode localization

The workflow of the automated algorithm is
illustrated in figure 1, with each component of
the workflow identified by letters to facilitate
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Figure 1. Workflow diagram of the automatic algorithm. Letters within the figure are utilized as references to specific components
when discussing the procedure in the text. A dashed line indicates the path followed in this study, where landmarks were validated
prior to their use in electrode localization. Figure abbreviations: LPA/RPA = Right/Left pre-auricular; HSV = hue, saturation,

and value; RGB = red, green, and blue.

cross-referencing in the subsequent detailed descrip-
tions of each step.

2.2.1. Mesh orientation and rotation (A)

The initial step in processing the 3D scan involves
detecting the head and adjusting its orientation for
uniform alignment. The mesh represents the cap-
tured headshape with the EEG cap. This process util-
izes two types of cuboid bounding boxes: the mesh
bounding box, defined as the minimal volume enclos-
ing the entire mesh, and the scanning bounding box,
which pertains to the spatial limits set during 3D scan
acquisition.

2.2.1.1. Orientation detection

(1) Mesh bounding box measurement: the procedure
starts by moving 8 cm inward from the bounding
box perimeter towards the center. Then, the maximal
and minimal values along the remaining two axes are
measured to determine the shortest distance, indicat-
ing the head’s position. (2) Planar analysis of the scan-
ning bounding box: the scanning bounding box often
intersects the upper body, creating a plane where
many vertices are closely aligned. Larger distances
between these vertices typically mark the lower upper
body, indicating the head’s location in the opposite
direction. This spatial distribution aids in determin-
ing the head’s orientation. This method is less robust
for head-only scans and serves as a secondary check to
the Bounding Box Measurement Method, enhancing
orientation accuracy and reliability.

2.2.1.2. Rotation detection

To eliminate irrelevant mesh sections, a 20cm
threshold was used based on the typical human
head height of 20-25cm [25]. The face location
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was estimated using curvature analysis. Significant
curvature differences, especially between the front
and back, were noted due to participants covering
their faces with their hands. The use of light blue rub-
ber gloves helped differentiate the brighter regions
in the front from the darker colors in the back of the
head. These methods assume the scan starts from the
front, as specified in the SOP, and may be less effective
if the face is slightly rotated.

2.2.2. Landmark localization (B)

The landmark localization algorithm is vulnerable to
noise, so a redundancy strategy is used. If primary
measures fail, the algorithm sequentially implements
alternatives, ensuring robust and reliable results.

2.2.2.1. Localizing nasion

First the center of the face is identified from the mesh
bounding box. An offset of 2.5cm is applied later-
ally from the center in both directions across the
mesh. The nasion’s vertical position is anticipated to
be within 1/3 to 2/3 of the head’s total height. This
positioning narrows the mesh to essential features
such as parts of the nose, hands, and the white marker
indicating the nasion. Color segmentation isolates the
three brightest clusters of vertices, which may include
the nasion, Fpz electrode, face mask, or parts of the
nose. These clusters consist of adjacent vertices with
a similar white color, and that no points is part of
other clusters. A logic-based approach using criteria
like color brightness, height differences, and bright-
ness comparisons between the top two clusters is
employed. This method, adapted for edge cases in the
development data set, improves the likelihood of cor-
rectly identifying the nasion, which may not always be
the brightest.
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2.2.2.2. Localizing left and right preauricular points
(LPA/RPA)

A methodology similar to that used for the nasion
is used to localize RPA and LPA. Mesh areas where
these points are unlikely to appear, such as the face,
back of the head, top of the head, and neck, are
removed. Color segmentation is then employed to
identify the brightest clusters of vertices. The top ten
brightest clusters are identified to increase the chance
of correctly localizing LPA and RPA. The center of
these clusters serve as the starting points for a ray-
tracing procedure, where a vector extends from each
selected bright point toward the opposite side of the
head. The landmark is identified at the nearest bright
point along the vector’s path where it intersects with
the mesh. If this method fails, a simpler logic-based
approach is used as part of the redundancy strategy.
This alternative strategy considers several factors: the
total number of viable candidates, variations in height
and distance among these candidates, color discrep-
ancies, and ray-tracing techniques. The ray-tracing
technique involves trying to match candidates in the
same height. These factors are utilized to refine and
select the final candidates. For detailed insights into
these redundancy/logic-based methods, readers are
directed to the evaluate_candidates function within
the nasion and pre-auricular classes, found in the
open-source code.

2.2.3. Electrode localization and labeling (C-F)
Identified by its position relative to the nasion and
color, the Fpz electrode serves as a strategic reference
point for further electrode labeling and segmentation.
Similar to the approach proposed by Taberna et al
[19], the localization primarily relies on the color dif-
ferences between the electrode cap and the electrodes.
The subsequent analysis primarily utilized the colored
vertices, which were created by overlaying the texture
onto the mesh’s structure.

2.2.3.1. Mesh removal

The next step involved the removal of all mesh ele-
ments located below the plane defined by the nasion,
LPA, and RPA, as all electrodes should reside above
this plane.

2.2.3.2. Segmentation

To increase the robustness of the approach under
diverse lighting conditions, both red, green and blue
(RGB) as well as hue, saturation and value (HSV)
color schemes were used. For each scheme, the mesh
underwent several segmentation iterations, employ-
ing a spectrum of threshold values ranging from strin-
gent to more tolerant. This was designed to accom-
modate variations in scan quality and lighting condi-
tions. The mesh was segmented based on white and
gray colors, which represent the colors of the elec-
trodes, and the vertices of the remaining mesh were
set to black.

M Tveter et al

2.2.3.3. Clustering

The segmented areas were subjected to clustering
using the DBSCAN algorithm [26], with an epsilon
value of 0.05. The clusters were assessed based on the
total number of vertices within each cluster, a para-
meter set within the range of 3—20 vertices to reflect
the small size of an electrode. The centroid of each
cluster was computed, serving as the proposed loca-
tion for an electrode. The mesh with the number of
proposed cluster centers closest to the total number of
actual electrodes (126) was saved as the initial local-
ized electrodes. This resulted in one set of initially loc-
alized electrode positions from RGB segmentation,
and another from HSV segmentation.

2.2.3.4. Labeling and verifying midline electrodes

The subsequent phase involved labeling of the local-
ized electrodes, starting with those aligned along the
front-to-back midline (Fpz to 1z). The process began
with aligning the template to localized positions in
HSV and RGB spaces, followed by employing the
iterative closest point (ICP)[27] strategy to improve
alignment. A verification process using electrode
order and inter-electrode distances along the front-
to-back midline assessed accuracy against the tem-
plate. This confirms correct positioning for labeling
or activates an estimation function for incorrect or
missing electrodes, using template distance and dir-
ection for estimation. Subsequently, the color scheme
requiring the fewest estimated electrodes was chosen
for final electrode localization, giving priority to loc-
alized overestimated electrodes. The same methodo-
logy applied to the side-to-side midline (T7 to T8).

2.2.3.5. Labeling and verifying all electrodes

After labeling and verifying both midlines, these pos-
itions facilitated a final template alignment using ICP,
labeling all localized points. Subsequently, a com-
prehensive verification process was initiated. This
entailed sorting the electrodes by the count of their
verified, labeled, and finalized neighboring elec-
trodes. The expected position of each electrode was
determined based on these neighbors, along with the
specified distance and direction in the template. If
a localized position aligned with its expected loca-
tion, it was confirmed as a verified, finalized solu-
tion. Conversely, if misalignment occurred, estima-
tion was undertaken based on neighboring electrodes,
template-specified distance and direction, and finally,
by identifying white vertices near the proposed solu-
tion. This procedure was executed for both HSV and
RGB solutions.

2.2.3.6. Merging solutions and final verification

Finally, the localized electrodes from both color
spaces were merged by averaging their positions, with
additional adjustments for overlaps, where two dif-
ferently labeled electrodes share the same position.
The strategy for managing overlapping electrodes was
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as follows: if the overlap occurred solely in one color
space, the electrode positions from the alternate color
space were adopted. When overlaps were problematic
in both color spaces, electrode positions were estim-
ated from neighboring values, followed by a cross
verification in both color spaces to guarantee consist-
ency. The final step entailed a comprehensive veri-
fication of all electrodes, leveraging the surrounding,
verified, and labeled electrodes for confirmation. This
step ensured that every electrode was accounted for in
the solution. Upon successful verification, the final-
ized solution was then displayed.

2.3. Validation (G)

The automatic localization framework for landmarks
and electrodes includes a visual validation tool. While
ideal for processing large datasets without manual
intervention, this tool also allows users to manually
validate and adjust EEG positions for smaller datasets
or individual cases.

For the results presented in this paper, validation
was structured into two distinct phases to enable sep-
arate validation of landmark and electrode localiz-
ation accuracy. Firstly, the algorithm produced the
suggested locations for the three primary landmarks,
offering the possibility for manual corrections should
these initial estimates prove inaccurate. Secondly,
the algorithm provided solutions for all electrodes,
allowing for similar manual adjustments if necessary.
During validation, the electrodes were adjusted if the
estimated position did not align with the center of the
electrodes, specifically the black circle in the middle.
The estimated circle had a radius of 2 mm, repres-
enting the potential variation in error for the valid-
ated solutions. However, during analysis and plot-
ting, the error distance was set to include electrodes
within 5 mm as correct, seen in other studies [16, 19]
and reported as leading to negligible estimation errors
[28]. This approach is also based on the argument
that Brodmann areas can be accurately identified with
variability of less than 1 cm [11]. For the landmarks,
solutions were classified as either correct or incorrect,
based solely on whether adjustments were needed,
without applying a ‘within 5 mm correct’ criterion.

2.4. Performance measures (H)

A comprehensive performance analysis was conduc-
ted to assess the algorithm’s efficacy across different
head regions and electrodes.

Adjustment analysis: analyzing the frequency and
magnitude of adjustments made during the valida-
tion phase.

Identified vs. approximated: the algorithm dif-
ferentiates localized electrodes as ‘identified” when
positioned correctly according to the template and
‘approximated’ when localization or verification fails,
requiring inference from neighboring electrodes, the
predefined template, or both. This distinction facil-
itates analysis of the ‘identified” electrodes’ accuracy
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and the typical locations needing ‘approximation.
Notably, an electrode classified as ‘approximated’ is
not inherently incorrect; rather, it indicates that due
to various factors, initial validation was unsuccessful,
making approximation the preferred approach.

Neighbor distances: in specific regions of the cap,
the distances between adjacent electrodes are small,
potentially leading to wrong electrode localization.

Template difference: the template is essential in
validating localized electrode positions and estim-
ating undetected electrodes. A comparative analysis
between the template positions and the average of the
actual validated electrode placements across various
subjects in the dataset will provide insights into the
template’s representativeness and potential areas for
improvement.

Outlier analysis: outliers are here defined as
errors above Q3 + 1.5 % (Q3 — Q1), where Q3 is the
upper/third quartile of data, and Q1 is the lower/first
quartile of the data.

Time analysis: the primary objective is to develop
a solution that is simple, accurate, and time-efficient.
This requires analyzing key steps: 3D scan acquisi-
tion, computational processing time, and validation
for accuracy and performance optimization.

2.5. Derived template analysis

The challenge posed by the inherent variability in
head shapes among subjects when using a standard
EEG cap template was identified during the initial val-
idation stages. In response, the adoption of an average
template, derived from actual head shapes and based
on a small, distinct subset of the data, was proposed.
This subset included 13 L and 8 M cap scans, deliber-
ately excluded from the validation phase to preserve
the integrity of the results. The template was gener-
ated by averaging the manually validated electrode
positions across all subjects within this subset, facil-
itating a comparison of the effects of different tem-
plates on performance.

2.6. Implementation details

The pipeline is dependent on the following Python
packages: 3D data manipulation utilized Trimesh [29]
and PyVista [30]. Data handling employed NumPy
[31]. Clustering via DBSCAN [26] and alignment
through ICP [27] were executed using scikit-learn
[32]. The code in its entirety is available at Github!°.

3. Results

3.1. Landmark identification

The automatic landmark localization algorithm
accurately identified the nasion point in 55.8% of
scans, the RPA in 80.0% of scans, and the LPA
in 84.2% of scans (figure 2). For the nasion, the

10 https://github.com/matstveter/EegElectrodeLocalizer.
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Figure 2. The figure illustrates the algorithm’s performance in localizing the landmark positions automatically. The histogram
(left) presents the percentage of correctly localized nasion, RPA, and LPA points, with a error of less than 2 mm. The violinplot
(right) displays the distribution of incorrectly placed points and their corresponding error distance in mm. The violinplot also

displays the diameter of the white markers as a dotted line for reference.

median error-considering only non-correct, non-
zero displacement values-was 36.4 mm, with outliers
observed at approximately 100 mm and an extreme
outlier near 200 mm. Similarly, the median errors
for RPA and LPA, under the same conditions, were
37.2mm and 39.3 mm, respectively, with outliers in
both categories around 80 mm.

3.2. Electrode localization

Figure 3 shows the algorithm’s performance in local-
izing EEG electrodes: 87.5% accuracy for L caps and
81.2% for M caps. The median error was 13.8 mm for
L caps and 15.8 mm for M caps, with outliers in both
cases exceeding 40 mm.

3.3. Performance analysis

In this subsection, the performance analysis of the
method is presented. For clarity, only a subset of
the full 126-channel layout is displayed in various
figures. However, the complete layout is provided in
the appendix, figure Al. When referring to channels
not included in the figures in this subsection, please
consult the appendix for the full layout.

3.3.1. Adjustment analysis

Figure 4 highlights that outer parietal and parietal-
occipital electrodes required the most frequent and
significant adjustments. Key areas-AF3-AFF5h-F5,
AF4-AFF6h-F6, PO4-PPO6h-P6, and PO3-PPO5h-
P5-in both L and M cap sizes necessitated regu-
lar adjustments, with the M cap showing a higher
need for peripheral corrections. For the L cap,
adjustments had a mean frequency of 12.5% and
a median of 3.29%; the M cap adjustments had
a mean of 18.8% and a median of 7%. Overall,
the L cap had 9 electrodes that never required
adjustments, while the M cap had 22, with most

of these located in the central and frontal areas.
Electrodes POO%h and PPO%h were especially chal-
lenging, requiring adjustments in more than 90% of
cases for both caps. In the analysis of displacement
magnitude, the L cap had a mean of 1.84 mm and
a median of 0.36 mm, with POO%h (15.97 mm), P9
(15.94mm), and P10 (15.77 mm) experiencing the
highest average displacements. For the M cap, the
mean was 3.04 mm, the median was 0.84 mm, and
the electrodes with the greatest average displacements
were P9 (20.84 mm), PPO%h (19.44 mm), and P10
(19.02 mm).

3.3.2. Identified vs. approximated

Figure 5 shows that certain peripheral electrodes
and specific locations (AF3, AF4, PPO6h, PPO5h,
PO4, PO3) were frequently approximated in both
cap sizes, with the L cap showing a higher num-
ber of identified electrodes. In the L, the most fre-
quently approximated electrodes were P9 (97.0% of
the cases), P10 (93.1%), and AF3 (92.1%), while for
the M cap, F10 (99.0%), P10 (98.0%), and F9 (97.0%)
were most approximated. Success rates for identi-
fied versus approximated electrodes were as follows:
L caps achieved a 96.3% success rate for identified
electrodes and 68.8% for approximated ones, whereas
M caps recorded 93.4% for identified and 63.4% for
approximated electrodes.

3.3.3. Closest neighbors

Figure 6 shows the distances between electrodes for
both L and M caps, based on the average actual
positions. Both caps exhibit similar patterns, with
parietal and parietal-occipital regions, and electrodes
AFF5h, AFF6h, PPO5h, and PPO6h, being consist-
ently highlighted in the heatmaps. For both caps the
closest electrodes were PPO9h, PPO10h, POOSh and
POO10h.
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Figure 3. The algorithm’s efficacy in automatic EEG electrode identification for the large and medium caps. The histogram (left)
displays the proportion of electrodes accurately identified by the algorithm, with an error of less than 5 mm. The violinplot (right)
shows the distribution of distance errors of the wrongly placed electrodes, error above 5 mm. Additionally, the violinplot includes

a gray dotted line indicating the electrode diameter for reference.

3.3.4. Template vs. average

Figure 7 demonstrates the disparities between the
provided template and the averaged actual validated
positions for both the L and M caps, as depicted in
figures 7(a) and (b), respectively. Particularly note-
worthy are the most prominent differences observed
in the parietal and parietal-occipital regions for both
cap sizes. The averaged validated positions of the M
cap exhibits nearly double the discrepancy observed
in the L cap, covering a more extensive area extend-
ing from the P9-P10 line to all electrodes below
this line. The mean differences were 10.64 mm for
the L cap and 23.99mm for the M cap. In the L
cap, electrodes with the largest differences were P9
(25.78 mm), PO0%h (21.7 mm), and F10 (21.47 mm),
while in the M cap, these were 1z (49.96 mm), P010
(49.29 mm), and P10 (47.58 mm).

3.3.5. Outliers

Figure 8 shows the distribution of the outliers
(explained in section 2.4) for the L cap 8(a) and M
cap 8(b). Notably, the identified outliers are predom-
inantly located at the periphery of each cap.

3.3.6. Timing analysis:

The algorithm had a mean time of 56.2s for the L
caps and 57.9s for M caps. The finished complete
manual validation or re-adjustment had a mean time
of 4.6 min for L caps and 5.4 min for M caps. This time
is calculated for the original template, not the new,
improved average template.

3.4. Template analysis

Figure 9 demonstrates the enhanced performance
achieved with the custom template, derived from
actual head shapes, compared to the standard

8

manufacturer-supplied template. Specifically, a per-
formance improvement of 3.5 percentage points
was observed for the L cap, and a 4.5 percentage
points increase for the M cap. Figure 10 illustrates the
improvements observed at the subject level, show-
ing a 93.1% improvement for L caps with an average
increase of 10.2 correctly localized electrodes, and
a 91.0% improvement for M caps with an average
increase of 13.9 correctly localized electrodes. No
improvement was observed in 0.3% of the L caps,
while performance worsened for 6.6% of L caps and
9.0% of M caps.

4. Discussion

In the current study, we propose a novel automatic
method for EEG electrode localization using 3D
scans, aiming to provide electrode positions for elec-
trical source reconstruction in a cost-efficient man-
ner. The aim was to introduce an alternative solution
to currently available time-consuming or less cost-
efficient methods. The resulting solution is an end-
to-end automated pipeline capable of localizing a set
of head landmarks and electrode positions in a high-
density 126 electrode EEG cap, and validated using a
large dataset.

The localization accuracies for the nasion, RPA
and LPA were 55.8%, 80%, and 84.2%, respect-
ively, with an error margin of 2mm. In the con-
text of automatic electrode localization, absolute
precision is not critical, provided that the posi-
tional suggestions do not deviate significantly enough
to induce electrode shifts. However, the need for
precision escalates when considering the adapta-
tion of these solutions for future potential MRI
co-registration.
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Figure 4. Comparison of large and medium caps: (a) Large caps: (Left) the frequency percentage of electrode adjustments and
(Right) the mean magnitude of displacement in millimeters. (b) illustrates the equivalent metrics for medium caps. The brighter
colors indicate electrodes that required more frequent adjustments or were associated with greater error distance. For the sake of
visibility, only 62 of the total 126 electrodes are displayed in the figures.

The automatic electrode localization algorithm
demonstrated high performance, achieving overall
accuracy of 87.5% for 304 L caps and 81.2% for 100 M
caps, spanning all electrodes, within a 5mm error
margin.

Analyzing outliers highlights the methods’ sens-
itivity to the SOPs. Strict adherence to SOPs is cru-
cial for ensuring data integrity and reliability, partic-
ularly in automated systems that lack human over-
sight. Without sufficient compliance with SOPs, there
is no assurance that the data accurately represents
the intended subject, such as a human head, even
though algorithms may accommodate variations in

rotation or shape. Discrepancies in rotation due to
non-adherence to SOPs can significantly degrade
the algorithm’s performance, as evidenced by out-
liers in nasion and RPA/LPA measurements, leading
to errors in landmark identification. For example,
the algorithm might mistakenly select other bright
areas such as different electrodes for the nasion, and
misidentify hair, electrodes, or brightly lit ear regions
as landmarks for RPA/LPA. Such misidentification
of landmarks can cause shifts in electrode place-
ment during the localization process in a fully auto-
mated pipeline. Outlier analysis for electrode loc-
alization revealed that most outliers were found at

9
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the cap edges, often linked to inaccurately placed
or absent landmark markings, as verified through
manual checks. This frequently led to the exclu-
sion of mesh sections containing electrodes, particu-
larly when landmarks were positioned too high, thus
removing these electrodes from the analysis.
Incorrectlocalization of landmarks were predom-
inantly attributed to lighting conditions and scan
quality, resulting in misidentifications in excessively
illuminated areas, such as portions of the ear. The
mandatory use of facemasks during data collection

(due to Covid) occasionally caused the algorithm
to mistake the white brim of facemasks for the nas-
ion points. Despite this challenge, the localization
of the LPA and RPA achieved good results, under-
scoring the robustness of our approach. For the
wrongly placed electrodes a more detailed perform-
ance analysis was conducted. The algorithm was par-
ticularly good at localizing electrodes in the frontal
and central regions. We achieved lower accuracy in
parietal, parietal-occipital regions, and specific zones
(AF3-AFF5h-F5, AF4-AFF6h-F6, PO4-PPO6h-P6,

10
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and PO3-PPO5h-P5), where electrodes frequently
required adjustments. Large differences were
observed in parietal and occipital areas, likely due
to substantial variations between actual head shapes
and the provided template, especially pronounced in
M caps. The four electrode zones were identified as
areas with minimal inter-electrode distances, elevat-
ing the likelihood of localization errors. Electrodes
in the final solution were classified as identified or
‘approximated’ to provide insights, with ‘identified’
electrodes correctly localized in 93.4% of M caps
and 96.3% for L caps, contrasting with a 63.4% and
68.8% accuracy rate for ‘approximated’ electrodes for
M and L, respectively. This distinction also offers a
valuable metric for assessing uncertainty and identi-
fying regions that might require manual validation in
practice.

Importantly, we observed that the suboptimal
localization of electrodes was mitigated when

the standard position template was substituted by
a template derived from a subset of data not used in
training nor validation. The accuracy increased by 3.5
percentage points in performance for L caps to 91.0%
and 4.5 percentage points for M caps to 85.7% in
terms of correctly placed electrodes. Investigations at
the subject level revealed that over 90% of the subjects
experienced an increase in performance with the new
template, correctly localizing more than 10 additional
electrodes on average for both cap types. However, a
subset of subjects also experienced a decrease in per-
formance, potentially due to electrode shifts, which
resulted in the displacement of a large number of
electrodes. Similar issues were occasionally observed
with the original template, which may have been
caused by various factors, including improper tem-
plate fit or incorrect detection of key areas such as the
midlines. Template discrepancy was also reported by
Hombolle and Oostenveld [20]. as a potential problem.
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It remains possible that the accuracy increase might
have been greater had the template been more finely
tuned to the data, e.g. by basing it on more 3D scans.
Verifying the representativeness of the external val-
idation set concerning head shape is not conduc-
ted, as such analysis falls outside the article’s scope.
Nonetheless, it is recognized that careful analysis and
generation of templates could significantly enhance
representativeness and applicability.

Comparing our results with those from studies
such as Taberna et al [19] and Homolle et al [20]
is challenging, primarily due to differences in val-
idation techniques and equipment—a complication
also noted by Taberna et al Our validation, conducted
exclusively within our framework without external
tools like FieldTrip or Polhemus, has occasionally

resulted in accurately positioned electrodes being
assigned zero values-a consequence that the mean
and average measurements will misrepresent the
algorithm’s true accuracy. Additionally, the inher-
ent limitations of 3D scans, susceptible to errors,
alongside variations in preprocessing between stud-
ies, complicate the evaluation further. Distinguishing
whether inaccuracies arise from the 3D scans or the
algorithm itself is imperative for a comprehensive
assessment of our method’s efficacy, underscoring the
difficulties in achieving reliable external validation.
Given these complexities, external validation is out-
side the scope of the paper.

The data collection protocol included the use
of white markers to mark the landmarks, a step
that may appear counterintuitive compared to

12
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Figure 10. Comparative performance of the newly developed and manufacturer’s templates. The average improvement, noted
within the green bars, represents the additional number of electrodes that were correctly identified when improvements occurred.

simply manually selecting these points using soft-
ware. However, we justify this approach for two
primary reasons. Firstly, when validating a large data-
set, our method’s automatic localization proves effi-
cient, saving time and effort in subsequent analyses.
Secondly, the manual placement during cap fitting
is a straightforward and quick process, integrated
seamlessly into the workflow. An important aim of
the currently proposed method is to minimize the
time required for extracting EEG electrode positions.
The acquisition time for the 3D scans was in line with
previous studies, around 2 min [19, 20]. While the
algorithm’s computational speed has yet to be optim-
ized, e.g. by implementing parallelization techniques,
the current processing time for both L and M caps is
approximately 1 minute, which we consider reason-
able in the context of a clinical study. The validation
step showed that L caps took approximately 4.6 min
and M caps around 5.4 min for both landmark and
electrode validation. The potential for time optim-
ization with the new template could arise from the
reduced need for electrode adjustments.

To the best of our knowledge, this study rep-
resents the first application of a large-scale dataset
with over 400 3D scans specifically for EEG elec-
trode localization, thereby constituting a significant
advancement in the field. The importance of using a
comprehensive dataset to analyze results and refine
methodologies cannot be overstated. Such a data-
set captures the full spectrum of potential incon-
sistencies that might arise during data collection
processes, such as the occasional misplacement of
white landmark markers due to the tight schedule
encountered in clinical settings. These situations can
introduce outliers and anomalies in electrode loc-
alization, emphasizing the need for robust localiza-
tion methods. The observed variability across differ-
ent scenarios—stemming from changing data qual-
ity, lighting, subject variability, and other factors—
highlights the limitations of small, highly controlled
datasets. There is a recurring trend in recent studies
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to propose time-efficient methodologies yet validate
them using small (<30), non-representative, and
highly controlled datasets. While these smaller data-
sets may offer a small measure of precision, they
often fail to represent the complexities and chal-
lenges of real-world data collection, potentially lead-
ing to an overestimation of a method’s true effective-
ness. Thus, the integration of a diverse and sizable
dataset is vital for a comprehensive assessment and
enhancement of localization techniques. This stra-
tegic approach ensures the evaluated method’s per-
formance is a true reflection of its capabilities in
varied and realistic settings. Our robust and auto-
matic framework, demonstrating overall good per-
formance, is built in a modular fashion, aimed for
future refinement, and offers the possibility to add
functionality and tailor it to future needs. This adapt-
ability underscores the framework’s versatility and its
potential to evolve alongside emerging needs, posi-
tioning it as a dynamic and enduring solution. The
main contribution of this study is the enhancement of
a segment of the source reconstruction pipeline. The
cost-effectiveness of the proposed method, utilizing
EEG and a 3D scanner, may broaden its usage to other
neurological disorders where precise spatial electrode
information is important. For example, the AI-Mind
project [22] employs connectivity analysis in demen-
tia research, demonstrating the broader applicability
of our method. While current practical applications
are primarily in research and, to some degree, epi-
lepsy, including promising results with regards to loc-
alizing seizure onset zones [33], the affordability and
simplicity of this approach could make it accessible
for routine clinical use, thereby enhancing diagnostic
accuracy and treatment planning across various neur-
ological conditions.

Adaptability, limitations and future work
As EEG systems differ substantially in terms of
electrode mounting (e.g. elastic caps, nets, fastening
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directly to the scalp with paste), creating a 3D scan-
based electrode position identification system that
captures all systems is challenging. While the devel-
opment of the current method was tailored to a par-
ticular EEG system, the method’s adaptability to new
datasets is partially addressed by the modular design
of the framework. This modular approach facilit-
ates the future integration of modules for other sys-
tems, file types, and scanners. Although the robust-
ness of our automated procedure has not been eval-
uated beyond the specific dataset and SOP, it is
important to recognize that certain components of
the framework may still operate effectively even if
the standard procedures are not strictly followed. In
such instances, manual input of landmarks might be
required, but automatic electrode localization should
remain achievable. However, it is important to note
that compatibility issues may arise with equipment
from different suppliers or different cap types, as
the method depends on detecting color differences,
particularly lighter colors. Nonetheless, if there is a
similar contrast between light-colored electrodes and
dark cap colors, adaptation of the method could still
be feasible.

This study presents certain constraints that also
outline avenues for future research. The algorithm
was validated with data exclusively from one labor-
atory, incorporating an array of photographers, sub-
jects, seasonal variations, and lighting conditions.
This evaluation was conducted solely on ANT caps,
indicating potential adaptability requirements for
other cap designs. The dataset consisted only of indi-
viduals aged 60 to 80 years. We do not anticip-
ate any degradation in performance related to the
age of the subjects, provided they use medium or
large cap sizes. This is partly because the dataset
includes both females and males, covering a range of
head models. Additionally, preprocessing steps such
as light correction and mesh improvement were not
applied, with the rationale being to challenge the
algorithm with a broad spectrum of scan qualities.
Introducing preprocessing steps, such as light correc-
tion and general mesh improvement strategies, could
potentially reduce the complexity of the input data,
which might not fully test the algorithm’s robust-
ness in handling diverse conditions. A general lim-
itation of the method is the assumption of adher-
ence to the SOP. If the scans drift too far from the
assumed quality in terms of lighting, angles, pres-
ence of certain colors, general scan quality and start-
ing locations, this might cause the method to fail or
perform suboptimally. Additionally, different scan-
ners, hardware, and software might offer varying
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resolutions and metrics, leading to errors and vari-
ability in the results. Using the validation tool as
well as verifying scan quality will help mitigate this.
A notable constraint of our approach is its inap-
plicability to retrospective data, making alternative
strategies like those suggested by Gallego Martinez
et al [34], which employ automatic localization of
landmarks through algorithms for eyes, ears, and
facial recognition, more suitable. However, our sys-
tem incorporates a validation tool that facilitates
rapid corrections of incorrectly positioned land-
marks and allows for manual placement as well. This
feature significantly enhances the practicality and
usability of our approach in clinical and research
settings.

For future work, several avenues are interest-
ing. Firstly, investigate the influence of preprocessing
on performance, with an expectation of perform-
ance enhancement. Secondly, how electrode posi-
tions, determined by this method, affect the preci-
sion of source reconstruction. Furthermore, it may
be relevant to conduct a cost-benefit analysis to eval-
uate whether the outcomes of this approach jus-
tify its adoption over more accurate but poten-
tially costlier alternatives. Third, test the method on
new populations and groups to evaluate its robust-
ness. Lastly, prioritizing the exploration of robust
methods for comparing results between studies is
essential.

5. Conclusion

We have developed and validated a robust framework
for localizing EEG electrodes using 3D scan data,
validated its effectiveness across a substantial data-
set. Our framework demonstrated high efficiency,
achieving a mean accuracy of over 90% in correctly
localizing electrodes. The high accuracy, combined
with the option for manual validation and adjustment
of incorrectly detected electrodes, makes the solu-
tion highly effective. This work provides a promising
avenue for future research, with the aim of enhan-
cing the practicality and accessibility of EEG analysis
in healthcare settings.
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