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Abstract
Robots operating in the real world will experience a range of different environments
and tasks. It is essential for the robot to have the ability to adapt to its surroundings
to work efficiently in changing conditions. Evolutionary robotics aims to solve this
by optimizing both the control and body (morphology) of a robot, allowing adapta-
tion to internal, as well as external factors. Most work in this field has been done in
physics simulators, which are relatively simple and not able to replicate the richness of
interactions found in the real world. Solutions that rely on the complex interplay be-
tween control, body, and environment are therefore rarely found. In this paper, we rely
solely on real-world evaluations and apply evolutionary search to yield combinations
of morphology and control for our mechanically self-reconfiguring quadruped robot.
We evolve solutions on two distinct physical surfaces and analyze the results in terms
of both control and morphology. We then transition to two previously unseen surfaces
to demonstrate the generality of our method. We find that the evolutionary search
finds high-performing and diverse morphology-controller configurations by adapting
both control and body to the different properties of the physical environments. We ad-
ditionally find that morphology and control vary with statistical significance between
the environments. Moreover, we observe that our method allows for morphology and
control parameters to transfer to previously-unseen terrains, demonstrating the gener-
ality of our approach.
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1 Introduction

The evolutionary theory describes how animals exhibit behavioral, structural, and
physiological adaptations to environmental changes across multiple generations,
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Figure 1: The Dynamic Robot for Embodied Testing (DyRET) standing on the four
different surfaces used in our experiments. The robot can change the length of its legs
to adapt its body to the environment it operates in.

which increases the likelihood of survival and the preservation of their genes. In na-
ture, this process is dependent on a large number of generations of animals breeding
and raising their young, resulting in many years for adaptation to take place. Natu-
ral organisms can adapt through learning reasonably quickly, but their morphologi-
cal adaptation is a long process. In robotics, we can also learn quickly through, e.g.,
controller adaptation, but as opposed to nature, we can also perform morphological
adaptation in real-time.

In the context of robotics, adaptability to dynamic environmental conditions and
mission parameters is a key enabling technology that allows robots to perform increas-
ingly complex tasks in challenging environments. Practically, improving the adaptabil-
ity of a robot unlocks an ever-expanding repertoire of deployment scenarios such as
disaster response, autonomous surveying, and others.

Legged robots are noted for their agility and ability to traverse a multitude
of terrain types and, as such, hold a particular promise for completing such mis-
sions (Hwangbo et al., 2019). They also provide an intrinsic and straightforward route
towards adaptability, in that their controllers, typically the rhythms produced by a gait
engine or the arcs that describe the movement of the robot’s foot-tip positions, can
easily be optimized through, e.g., reinforcement learning (Kohl and Stone, 2004) and
evolutionary techniques (Heijnen et al., 2017).

As a simple motivating case, consider a legged robot deployed in a forest or gar-
den. The robot can reasonably be expected to have to scramble over some obstacles as
well as squeeze between others. It follows that high in-mission performance requires
the robot to be tall (at times) to step over obstacles, and small (at other times) to squeeze
into tight spaces. In cases like these, behavioral adaptation through pure controller
optimization, as described above, provides only limited adaptability, in that the mor-
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phology of the robot is static1. Recent work has shown examples where morphological
adaptation of a physical robot can serve as an effective alternative to classic adaptation
of control (Kriegman et al., 2019b), outperform designs by human engineers (Saar et al.,
2018), and even cases where adapting morphology is the only feasible option (Picardi
et al., 2019).

We describe an approach that bridges the fields of embodied intelligence (Howard
et al., 2019) and evolvable hardware (Greenwood and Tyrrell, 2006) by focusing on in-
environment behaviors produced by the simultaneous optimization of controller and
morphology. All experiments are conducted in hardware on a dynamically reconfig-
urable quadruped platform (shown in Fig. 1). Embodied AI tells us that intelligent
in-environment behavior arises from a strong link between morphology, controller, and
environment. By co-evolving morphology and controller on a hardware-reconfigurable
robot, we can expect to perform a broader range of missions in more challenging scenar-
ios than if just controller tuning were considered (Nygaard et al., 2018b). The relatively
few previous studies on the simultaneous optimization of legged robot morphology
and control have mostly performed the optimization in simulated environments (Ny-
gaard et al., 2017; Auerbach et al., 2019; Miras and Eiben, 2019; Hornby et al., 1999).
The few examples performed on real-world systems are on simple robots or require too
much human intervention or time to adapt to continuously changing environments
(Vujovic et al., 2017; Jelisavcic et al., 2017; Saar et al., 2018; Pagliuca and Nolfi, 2020).

We have previously found that a multi-objective approach has to be taken when
optimizing legged robot locomotion with the goal of being applicable to real-world
problems (Nygaard et al., 2016). Choosing a single trade-off between speed and sta-
bility before optimization (the latter often being highly correlated to energy efficiency)
is either very hard or impossible on a physical legged robot solving complex tasks
in the real world. Being able to select the trade-offs after optimization increases the
relevance of the algorithm to a much wider range of applications. Evolutionary algo-
rithms are a natural choice given their population-based approach and wide selection
of diversity-preserving evolutionary operators. Morphology and control are highly in-
terdependent, and their effect on behavior and performance is very complex – even
more so when also considering the environment the robot operates in. Due to this, op-
timizing morphology and control separately would yield sub-optimal results (Rosendo
et al., 2017). Being able to control the balance between exploration and exploitation is
one of the strengths of an evolutionary approach, and makes them highly applicable to
these types of complex multi-objective problems. Controlling the degree of exploration
is especially important when working on a physical robot that can suffer mechanical
damage due to testing destructive solutions early in the search (Nygaard et al., 2019c).

Our earlier experiments on real-world evolution of legged robot morphology and
control include adaptation to different internal hardware states (Nygaard et al., 2018a).
In this paper, we tackle the challenge of real-world adaptation to external states. Specif-
ically, we conduct experiments on adapting robot morphology and control to different
types of planar surfaces, see Fig. 1.

1although posture may change through control, the actual geometry of the robot is fixed 
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We propose two hypotheses to investigate robotic structural adaptation in the real
world:

H1: Performing an evolutionary search in diverse physical environments will result in individ-
uals with significantly different control and morphology.

This states that the evolutionary search adapts the individuals to the environ-
ments they are evolved in and can be disproven if we observe quantitatively sim-
ilar individuals after evolving on characteristically different terrains.

H2: The performance of the evolved individuals will transfer better to qualitatively similar en-
vironments.

This states that the results found in evolution will generalize and that individuals
adapted to one type of terrain will perform comparably in other qualitatively
similar terrains. It can be disproven if the performance of individuals is shown to
be very different in similar terrains.

Our results reveal that evolving on different surfaces has a significant effect on
both the control and the morphology of the robot. This supports our first hypothesis
on adaptation. Subsequently, we tested the resulting individuals from the evolutionary
runs on previously unseen surfaces. The results show that individuals perform best on
surfaces that are qualitatively close to the one they were trained on. This supports our
second hypothesis on generalization to unseen environments.

Being able to handle unknown, dynamic environments is a compelling reason for
adaptation, and our ultimate goal. In this paper, we contribute with an important first
step by testing adaptation on a variety of indoor planar surfaces by showing that mor-
phological adaptation is a crucial factor in unlocking heightened performance, even in
these relatively innocuous environmental scenarios. Moreover, in the vein of Auerbach
and Bongard’s work (Auerbach and Bongard, 2014), we show that evolution can adapt
to different terrains, but this time using a real-world-only search. Adaptation to these
kinds of environmental differences is highly dependent on real-world evaluations as
the natural noise, uncertainty, and detailed interaction dynamics can be impossible to
model with current physics simulators (Eiben, 2014).

2 Background

In this section, we provide a brief overview of the field of evolutionary robotics, with a
particular focus on gait learning, morphological adaptation, and optimization on phys-
ical robots in the real world.

Most effort in robot adaptation has focused on improving the control of a robot.
Typically, the gait pattern (Weingarten et al., 2004), foot-tip arcs (Heijnen et al., 2017),
or more high-level gait parameters (Nygaard et al., 2016) are candidates for optimiza-
tion. Approaches include heuristic terrain adaptation (Homberger et al., 2016) to switch
gait based on, e.g., energetics (Kottege et al., 2015) and power consumption (Jin et al.,
2013) as terrain changes, as well as more complex hierarchical optimization-based
approaches (Dario Bellicoso et al., 2016). There are many methods to optimize the
control of a robot, including reinforcement learning (Kohl and Stone, 2004), trans-
fer learning (Degrave et al., 2015), particle swarm optimization (Kashyap and Parhi,
2020), bayesian optimization (Calandra et al., 2016), and deep reinforcement learn-
ing (Hwangbo et al., 2019). Another popular approach is to use methods from evo-
lutionary computation (Doncieux et al., 2015), potentially in combination with other
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more data-conservative techniques like bayesian optimization (Lan et al., 2020). Many
different types of legged robots are used in research, but doing machine learning on
physical robots puts high demands on reliability and maintainability, making some
robots more suitable than others (Nygaard et al., 2019c).

Evolutionary robotics is a field that uses techniques from evolutionary computa-
tion to optimize different aspects of robots. Most work in the field has traditionally
been done on virtual robots in simplified physics simulations and is only concerned
with optimizing the controller (Mouret and Chatzilygeroudis, 2017). Working in sim-
plified simulations alone often results in controllers and morphologies that are hard to
transfer to the real world due to inaccuracies in the modeling, a problem referred to
as the reality gap. Many solutions to reduce the reality gap have been proposed, such
as adding noise (Jakobi et al., 1995), starting in simulation and finishing in the real
world (Nolfi et al., 1994), modeling the reality gap itself (Koos et al., 2013), and treating
simulators as just another environment that needs adaptation (Nordmoen et al., 2019).
There have been several significant contributions to solve this problem, but they have
not kept up with the increased complexity in the terrains and environments of current
robots (Mouret and Chatzilygeroudis, 2017).

There are many examples of evolutionary robotics techniques being used to evolve
gaits in the real world on different physical robots, including commercial off-the-shelf
legged robots like the AIBO (Hornby et al., 1999; Chernova and Veloso, 2004), as well
as purpose-built custom robots (Yosinski et al., 2011). Most optimize a limited set of
parameters that control all the legs identically. However, there are also examples that
generate separate control arcs for each leg (Heijnen et al., 2017), which allows adapta-
tion to the specifics of the hardware (e.g., an actuator slipping, or delivering reduced
torque due to wear).

Optimizing control can be a very effective way of adapting a robot to new tasks
and environments. However, there are several examples where optimizing the body of
the robot, its morphology, can also be an effective method. Due to the inherent diffi-
culties associated with making a variable-morphology robot, most research to date on
adaptive morphology on physical robots does the optimization ahead of time in sim-
ulation, then transfers a select few individuals to the real world for testing. Examples
of this include legged robots (Nygaard et al., 2017), soft robots (Kriegman et al., 2019a),
modular robots (Auerbach et al., 2019), and even flying robots (Rosser et al., 2019).

Morphological adaptation offers more freedom to tailor in-environment behavior,
and through the lens of embodied cognition, provides the means to tightly couple con-
trol and morphology with environmental performance. Morphological adaptation ap-
proaches in hardware are now becoming increasingly viable. This is largely thanks to
ongoing improvements in the quality and availability of the prerequisite robotic com-
ponents, and the rapid adoption of flexible fabrication techniques, e.g., 3D printing,
into the robot design process. There are broadly two approaches to achieve morpho-
logical robot adaptation: (i) optimize 3D-printable components and attach them to a
robotic base to provide bespoke terrain-specific performance properties (Collins et al.,
2018); or (ii) create a single robot with built-in adaptation abilities (Nygaard et al.,
2019b). We focus on the latter approach as it allows morphology to be changed in-situ,
e.g., as a real-time response to environmental stimuli. It also opens up the possibil-
ity to incrementally learn a controller on a simpler hardware configuration, which has
previously been shown to increase robustness (Bongard, 2011).

We note that the literature shows a distinct lack of morphological variation on real-
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Figure 2: Top and side view of the robot, showing the directional terminology used as
well as the names of the three links of the legs.

world robots, making our focus on employing evolutionary methods for optimization
of the morphology of a physical quadruped robot novel.

3 Materials and Methods

This section introduces our robot, before describing the gait controller, evolutionary
setup, and physical environments used in the experiments.

3.1 The DyRET robot

We used the Dynamic Robot for Embodied Testing (DyRET), a mammal-inspired
quadruped robot (Nygaard et al., 2019b). This custom robot was developed at the
University of Oslo as a platform for evolutionary experiments, in particular for simul-
taneous optimization of morphology and control. The design allows the robot to in-
dependently and automatically change the length of its femurs and tibias, as seen in
Fig. 2.

The DyRET project is certified by the Open Source Hardware Association (OS-
HWA) as fully open source. All software, hardware design files, documentation, and
simulation models are available online2.

The robot body is mostly built with 3D-printed fiber-reinforced plastic and milled
aluminum parts, along with Commercial-Off-The-Shelf (COTS) parts, including carbon
fiber tubing and aluminum brackets. Being able to endure bad morphology and gait
combinations can require a superabundance of motor power. Keeping weight down
was, for this reason, a priority during the design phase, while keeping high robustness
and maintainability of the platform.

Each leg features three revolute joints, with a Dynamixel MX-64 in the coxa, and
Dynamixel MX-106 servos in the femur and tibia. These are connected on a common
bus, and each run a separate PD position controller. Each femur and tibia consist of a
custom linear actuator that allows the length of each leg segment to be changed. The

2https://github.com/dyret-robot/dyret documentation
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Air front

Air top

Air back

Ground front Ground back

Figure 3: An example of a typical foot tip trajectory, including the five control points
used to calculate the spline shape. The solid line shows the full step, while the dashed
lines show the trajectory for the previous and next steps. This view shows the side of
the robot, with the front of the robot to the left of the figure.

mechanical means of achieving repeatable, physically strong morphological reconfigu-
ration on a robot of this size requires the use of, e.g., screw-based linear actuators, the
trade-off being that the mechanism is too slow to be used actively as actuation in a dy-
namic gait. The femur can extend by 50mm, and the tibia by 100mm. This is powered
by a brushed DC motor, connected to a lead screw through a chain, resulting in a linear
speed of approximately 1mm/sec. An absolute encoder gives the linear actuators an
accuracy of around half a millimeter.

The robot features an MTi-30 Attitude and Heading Reference System (AHRS) in
the center of its body, which gives absolute orientation, rotational velocity, and linear
acceleration. Reflective markers for motion capture are mounted on the robot body for
measuring absolute position and orientation. Each servo has sensors for temperature,
voltage, current, and joint position.

The robot is tethered to a desktop computer over USB, which runs all software
on the Robot Operating System (ROS) framework. The gait controller runs at a rate of
50Hz, exchanging commands and data to and from the servos, while the sensors and
motion capture system are sampled at 100Hz.

3.2 Parameterizable control and morphology

The robot uses a high-level spline-based gait controller working in Cartesian space (Ny-
gaard et al., 2019a). For generating the foot tip trajectory, a three-dimensional looping
cubic Hermite spline is built using five control points. These define the path the leg
takes through the air, as seen in Fig. 3. All legs follow the same trajectory but are offset
with a static phase shift. The adjustable parameters and ranges of the parameters can
be seen in Table 1. Note that the controller only generates target positions and that the
actual leg movement can vary depending on the surface it is walking on.

In addition to the 11 parameters controlling the spline shape, seven global param-
eters are shown in Table 2. Two parameters define the gait timing; the frequency of
the gait (steps per second for each leg), and lift duration (the percentage of the gait
period spent moving the leg through the air). We have also added a balancing wag—
a counter-balancing movement—to increase the stability of the robot by leaning to the
opposite side of the leg it is currently lifting. This movement is needed since the weight
of each leg is high compared to the overall body weight. It is especially useful at slow
speeds, where the inertia from movement alone can not be used to counteract the shift-
ing weight of the legs. The phase of this movement can be changed, along with separate
amplitudes for the lateral and cranial amplitude (see Fig. 2).
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Table 1: Parameters and ranges defining the spline shape. The axes are shown in Fig. 2.

Control point Lateral (mm) Cranial (mm) Dorsal (mm)
Groundfront 0 [0, 100] 0
Groundback 0 [-150, -50] 0
Airfront [-12.5, 12.5] [25, 125] [19, 41]
Airtop [-12.5, 12.5] [-30, 30] [39, 61]
Airback [-12.5, 12.5] [-125, -25] [19, 41]

Table 2: Ranges for gait and morphology parameters.

Parameter Range
Wag phase ≈[-0.394, 0.394]
Wag amplitudes [0, 14.0]
Lift duration [0.13, 0.20]
Frequency [0.25, 1.0]
Femur length [0, 50]
Tibia length [0, 100]

For controlling the morphology, the Femur length and Tibia length parameters are
used. For the experiments in this paper, all legs share the same femur and tibia lengths.
The legs will reconfigure fully to the target length before the evaluation of a new gait is
performed.

3.3 Evolutionary setup

Our evolutionary search was configured to find combinations of control and morphol-
ogy that achieve both high speed and stability, and expose the Pareto front of trade-offs
between these two objectives. For this, we apply the commonly used NSGA-II (Deb
et al., 2002) algorithm with two fitness objectives, Fspeed and Fstability.

Speed is calculated by using the position of the robot from motion capture equip-
ment (P ) and can be seen in Equation 1. Stability is found using the on-board Attitude
and Heading Reference System (AHRS) sensor, calculated as a combination between

Table 3: Parameters for the evolutionary experiments

Name Value
Algorithm NSGA-II
Evaluation time Maximum 20s
Parameters Real: [0, 1]
Recombination None

Mutation
Type: Gaussian
Probability: 1.0
Sigma: 1/6

Evaluations
Population: 8
Generations: 32
Runs per surface: 5
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standard deviations of orientation (Ang) and linear acceleration (Acc), seen in Equa-
tion 2. The AHRS reports the euler angles of the orientation of the robot in relation to
magnetic north. For our sensor, α has experimentally been set to 1

50 , resulting in ap-
proximately equal contributions from linear acceleration and orientation during initial
testing.

Fspeed =
‖Pend − Pstart‖

timeend − timestart
(1)

Fstability = −
axes∑
i

(
α ∗ std(Acci) + std(Angi)

)
(2)

The two fitness objectives are both needed. Evolving only for speed incentivizes
solutions that are at the brink of falling, and evolving only for stability incentivizes
solutions that move as little as possible. Combining the two objectives results in the
ability to choose robust trade-offs over a range of different speed-stability combina-
tions.

Our genetic algorithm uses Gaussian mutation with a probability of 1 and a sigma
of 1/6, with no recombination. This has been shown to give a good balance between
exploration and exploitation in previous experiments (Nygaard et al., 2016). To prevent
values accumulating around the upper and lower bounds of the genotype due to simple
clamping, we continue mutation back towards the middle of the range when we hit a
maximum or minimum value (Nordmoen et al., 2021).

Before evaluating a new individual, the length of the legs is changed, and the feet
repositioned one at a time to the start pose of the new gait, to remove any measure-
ment contamination from previous individuals. Each evaluation was completed when
either the robot had walked one meter forwards or 10 seconds had elapsed. Previous
experiments have shown this to give a reasonable estimation of the actual performance
of both fast and slow gaits, regardless of stability. The robot was then manually moved
back to the starting position, before the next individual was evaluated. The operator
had a remote control with the ability to pause, retry, or discard individuals if anything
unexpected happened. This is done to not penalize individuals for effects out of the
robots control, for instance the operator tripping. Servo temperatures were monitored,
and the robot was left to cool down when any servo exceeded 60◦C. The evaluation
time for a single individual was approximately 30 seconds, including setup, cooldown
and other manual intervention, as well as the actual walking.

Performing evolution on a real-world robot severely limits the number of evalu-
ations attainable for each run of the algorithm. The larger the number of evaluations,
the higher the probability of mechanical damage to the robot that could potentially
skew the results (Nygaard et al., 2019c). Based on previous successful experimenta-
tion (Nygaard et al., 2018a), we run 256 evaluations, encompassing 32 generations of
8 individuals. These parameters promote convergence, without wasting an excessive
amount of evaluations at the end of the runs on minor improvements.

3.4 Experimental environments

The purpose of our experimentation is to assess how different environments affect the
evolution of different individuals, looking at both performance and behavior. Robots
operate in an increasing number of terrains with varying roughness, slope, discontinu-
ity, and hardness characteristics (Howard and Seraji, 2001). We select four surfaces that
can be characterized by the two qualitative features, shown as different dimensions in
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Figure 4: The four different carpets used to approximate real-world terrains with dif-
ferent characteristics.

Figure 4: hardness (soft and hard) and roughness (coarse-textured and fine-textured).
In our experiments, we consider hardness to be the primary feature. Surfaces with
different hardness are used during evolution to train two distinct populations. Rough-
ness is considered to have less of an effect on behavior and performance, and is there-
fore used as a secondary feature. Surfaces with different roughness are only used to
evaluate to what degree the populations generalize to new environments.

Surface A consists of very tightly woven wool carpet. It serves as a baseline in our
experiments and is a hard, fine-textured surface with high friction. Surface B consists
of a Smartstrand fiber carpet made from polyester. The strands are very thick and make
up one coherent surface. It is therefore experienced as fine-textured and very soft by
the robot, as its legs easily sink into it. Surface C consists of a carpet made from natural
Sisal fibres, the leaves from the Agave plant. The surface is hard with large knots that
give it a very coarse texture. Surface D consists of Arizona 26 artificial grass, made
from polyethylene. The surface is soft, with an underlying moss-like structure. The
individual grass-strands point in multiple directions giving it a coarser, non-uniform
texture. These surfaces reflect features found in natural terrains like concrete, sand,
hard-packed soil, and grass, respectively.

4 Experiments and Results

We conducted two experiments. We first ran 10 full evolutionary runs on the fine-
textured hard (A) and fine-textured soft (B) surfaces. We then randomly selected 12
individuals from the final Pareto front and re-evaluated them on all four surfaces to
observe how the evolved individual’s performance compares on the previously unseen
coarse-textured hard (C) and coarse-textured soft (D) surfaces.
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Figure 5: Performance of all individuals from the Pareto fronts of the evolutionary runs
on two different surfaces. The lines are a result of locally weighted linear regression
using a nonparametric lowess model with default Seaborn parameters.

Experiment 1 - evolutionary runs

In this experiment, we ran five evolutionary runs on surface A and five on surface B,
producing two Pareto fronts of individuals evolved for the different surface hardnesses.
We alternated runs on the two surfaces to make sure gradual wear-and-tear of the robot
would affect results from the two surfaces equally.

Fig. 5 shows the resulting Pareto fronts from all the evolutionary runs, with 65
individuals from surface A and 52 from surface B. The individuals achieved similar
performance for speeds below about 10m/min, and higher fitness on the softer carpet
(surface B) for speeds between about 10m/min and 15m/min. Speeds above 15m/min
were only seen on the hard carpet (surface A). For each surface, four out of five evolu-
tionary runs had individuals that were part of the final global Pareto front.

Fig. 6 shows the development of the mean hypervolume of the Pareto fronts as the
search progresses. The search appears to have converged on the hard carpet (surface
A) after less than 100 evaluations. The search on the soft carpet (surface B), however,
shows slight improvements up to the end of the evolutionary runs.

Fig. 7 shows the parameter values of the individuals in the Pareto front for all
evolutionary runs on each surface. We ran a two-sided Mann-Whitney U test on each
parameter (n1 = 65, n2 = 52, p < 0.01), with a Holm-Bonferroni p-value correction, to
see if the individuals found with the evolutionary search had statistically significant
differences in some of their parameters for the different surfaces. For morphology, the
tibia length showed significant differences (U = 2733). For the controller, we found
statistically significant differences for the cranial position of the ground front control
point (U = 2478), and the cranial (U = 783) and dorsal position (U = 925) of the air back
control point. Note that the parameter values seen are from the full resulting Pareto
front, including a range of different trade-offs between speed and stability.

Fig. 8 shows the details of two selected parameters from control and both param-
eters from morphology. We see little difference in the length of the femur (Fig. 8c.), but
the tibia has a clear difference between the two surfaces (Fig. 8d.). On the hard carpet
(surface A), we see a very uniform distribution across the whole range. However, for
the soft carpet (surface B), we only see one single individual with a tibia length above
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Figure 6: Mean hypervolume of the Pareto fronts from the evolutionary runs on each
surface. The hypervolume is calculated as the size of the dominated area under the
Pareto front, to a minimum speed of 0, and a minimum stability of -1. The shaded
areas show the 95% confidence interval for the mean value.
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Figure 7: The genotypic values from all individuals on the final Pareto fronts from
all evolutionary runs, grouped by the surface they were evolved on. Control point
parameters are denoted with the axis they belong to, with l for lateral, c for cranial, and
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Surface A Surface B
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Figure 8: Rain cloud plots showing the distributions for two selected control parame-
ters (a-b) and both morphology parameters (c-d).

13



T.F. Nygaard, C.P. Martin, D. Howard, J. Torresen, K. Glette

-150-100-50050100

0

20

40

60 Surface A
Surface B

Figure 9: The solid lines show the mean trajectory splines of all Pareto-optimal individ-
uals from each evolutionary run. The shaded areas show the kernel density estimates
for the spline control points. The plot is seen from the side of the robot, with the front
of the robot to the left of the figure.

40% of the available length.
To better visualize the differences in the evolved controller parameters, Fig 9 shows

kernel density estimates for the control points, as well as the mean controller splines.
The mean splines were found by averaging all positions for each time step in the gait
period. The kernel density estimates are shown as shaded areas and were calculated
using a Gaussian kernel with Scott’s rule to determine kernel size. The figure shows
small differences in the two points on the ground, as well as the front and top points in
the air, but there are more substantial differences in the back air point.

From these results, we see statistically significant effects on both control and mor-
phology due to the impact of evolving on different surfaces.

Experiment 2 - verification

In this experiment, we verify the results from the evolutionary runs by re-evaluating a
subset of the individuals multiple times on the surface they were evolved on, as well
as observing the performance on unseen surfaces. We selected six random individuals
from the resulting Pareto fronts of the evolutionary runs for each surface. We then
tested these twelve individuals 20 times each on all four surfaces, for a total of 80 new
evaluations per individual.

Fig. 10 shows the performance of all the re-evaluated individuals. The perfor-
mance on surface A and C (both in shades of blue), and B and D (both in shades of
orange) are seen to be closer to each other in most of the plots than to surface with dif-
ferent hardness. This suggests that the performance of the evolved individuals tends
to be grouped for similar environments.

To quantify these differences in performance between the different surfaces, we
first did min-max normalization of speed and stability. We then measured the Eu-
clidean distance between the mean performance on the different surfaces, for each in-
dividual. The mean results over all individuals are shown in Table 4. This distance
matrix shows us the differences in performance between the different surfaces; smaller
values show a more similar performance. We see that the two combinations of surfaces
with the smallest difference in performance are surfaces A and C, and B and D. We
also see that surface B is closer to both A and C with .073 and .082 respectively, than to
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Figure 10: Performance measurements for all re-evaluated individuals, with the same
axes as Fig. 5. Each plot contains the 80 evaluations, distributed across the four sur-
faces, of one individual. The individuals in the two top rows were initially evolved for
surface A, while the bottom two were evolved for surface B. Note that the scaling is
different for each plot to best show relative differences in performance.
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Table 4: Distance matrix showing the mean normalized Euclidean distance between
evaluations on different surfaces.

Surface A Surface C Surface B
Surface D .108 .106 .048
Surface B .073 .082
Surface C .053

surface D with a distance score of over 0.1 to both surfaces.
From these results, we see that individuals display more similar performance on

new surfaces that are closer to the surface they were evolved on.

5 Discussion

The results in Experiment 1 showed statistically significant effects on both control and
morphology due to the impact of evolving on different surfaces. This directly supports
our first hypothesis (H1) and suggests that there is a benefit of optimizing morphology
for different surfaces. Moreover, the experiment shows that the evolutionary search
was able to find suitable individuals adapted to the real-world characteristics of the
surfaces, using only real-world evaluations.

The results of Experiment 2 showed that individuals display similar performance
on new surfaces that are closer to the surface of their evolution. This supports the
second hypothesis (H2) and suggests that the results apply to qualitatively similar sur-
faces.

Overall, these two experiments suggest that an archive of different individuals,
evolved for a range of different terrains in an offline fashion, could be effectively uti-
lized on new terrains by selecting previously found individuals from similar surfaces in
the archive. The archived individuals could then be further improved by local search
or other techniques if needed. Deployment in the real world, however, would most
likely require more complex measurements of terrain features than the simple two-
dimensional approach taken in this paper.

5.1 Interpretation of the evolved solutions

We believe that the difference in maximum achieved speed between the two surfaces,
as seen in Fig. 5, is related to the difference in leg length seen in Fig. 8c/d. The mor-
phologies found for surface A have longer legs, and are thus able to achieve higher leg
speeds for the same joint velocity. This also fits well with the qualitative estimate of
walking difficulty, as softer surfaces typically require more power and torque to walk
in. For speeds between about 10m/min and 15m/min, however, individuals evolved
on surface B outperforms individuals evolved for surface A. This is most likely because
the search process inherently spends more effort on improving individuals at the ends
of the Pareto front, aided by the crowding distance metric in the NSGA-II algorithm.
Small performance increases in this area for surface B will result in the individuals
being kept. For surface A, this effort might instead be spent on trying to find faster
individuals, which is inherently more difficult, and requires considerable effort. This
also leads to large differences in the hypervolumes seen in Fig. 6. We believe much of
the difference is caused by high speed individuals only being found on surface A.

Fig. 7 shows the differences between the individuals from the Pareto fronts on the
two different surfaces. There is a very large variance in most of the parameters, but
this is not surprising since the groups we are comparing contains the whole range of
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individuals from the Pareto front. One would expect less variation if comparing indi-
viduals evolved for only a single objective. Still, we can observe some clear differences
between the sets of individuals evolved for different surfaces. One might think that the
parts of the search space that is not populated by any individuals would point to un-
usable values that should be removed as to make the search space smaller and thus the
search more effective. However, these areas might be necessary for other environments
or tasks than what we have used here.

One of the most substantial differences in the leg trajectories can be seen where
the leg lifts from the ground, at the back of the step (to the right in Fig. 9). The leg
trajectory takes a sharper turn with a more direct path on the soft surface (surface B),
while the movement is more rounded on the hard surface (surface A). The legs of the
robot sink into the soft surfaces, which means that there is a larger difference between
commanded and actual movement close to the ground than for the harder surfaces.
This might explain the sharper transition of the trajectory for the soft surface (surface
B), as the softness of the terrain provides inherent dampening of the movement, and
the trajectory can then be sharper than harder surfaces without this.

From the distance measures in Table 4, we see that the two surface combinations
that have the most consistent are between surface A and C, and surface B and D. This
corresponds to our primary feature of hardness, and supports our hypothesis that the
performance transfers better to qualitatively similar environments. The third lowest
difference is seen between surface A and B. This follows our secondary feature, as both
of these have a fine texture. The other combination of similar texture, terrain C and
D, is the fifth lowest distance, being surpassed by surface B and C. This combination
crosses both our chosen terrain characteristics, but that is not surprising as this two-
dimensional measure is a very simple approach to some fairly complex differences in
terrain.

5.2 Reflections on real-world evolution

Performing evolutionary optimization on real-world robots involves a trade-off be-
tween search effectiveness on one side and platform performance degradation, on the
other side. While the number of evaluations in our runs were relatively small compared
to typical evolutionary experiments using, e.g., simulated robots, the results showed
reasonable convergence and performance to support our hypotheses. However, the
approach could benefit from hybridization with other approaches, e.g., using physics
simulation as a starting point (Zagal and Ruiz-Del-Solar, 2007; Collins et al., 2018) or
surrogate models (Gaier et al., 2017; Chatzilygeroudis et al., 2017) to improve the data-
efficiency in the search process.

We have designed a platform with self-modifying morphology, enabling practical
real-world evolution of morphology and control, and thus exploiting environmental
features hard to model in simulations. We showed this for internal conditions, namely
actuator power, in (Nygaard et al., 2018a), and external conditions, like surface rough-
ness, in this paper. While the designed platform optimizes its morphology, it comes at
the cost of additional hardware required for the mechanism, adding significantly to the
total mass of the system. Future robots featuring new materials and mechanisms may
allow morphological reconfiguration with less overhead, which might make it even
more applicable to real-world problems.

The fact that individuals from four out of five of the evolutionary runs on each
surface are part of the global Pareto fronts shows that we did not have substantial
changes to the robot or surfaces during our experiments. Gradual damage to the robot
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or changes to the surface during operation might result in individuals from early eval-
uations getting better performance. However, the fact that both the first and last evo-
lutionary run on each surface resulted in globally Pareto-optimal individuals suggests
this is not an issue in our experiments.

5.3 Future work

There are many avenues for future work arising from this paper. The role of morphol-
ogy, control, the environment, and the interaction between them is still unclear, and an
expanded experimental setup evolving control and morphology separately might yield
interesting insights into how the different factors all affect behavior and performance.
When we compare how the individuals perform on different surfaces, we mainly look
at the difference in performance. Analyzing the behavior instead would allow a more
thorough investigation into the underlying effects, but would require more effort both
during the experiments and after. In the same vein, looking at the actual movement of
the legs instead of the target position of the actuators could yield new insight into the
effects different terrains have on the robot. Measuring more complex environmental
features during evolution could enable this to be used for online adaptation in unstruc-
tured environments as well, going beyond the two simple environments we have here.
Bringing simulation or surrogate models into the mix could allow longer evolutionary
runs with better convergence at fewer physical evaluations in the real world. There is
also a range of other optimization techniques that could be done instead of or in combi-
nation with evolutionary search. Bayesian optimization has been shown to work well
for in applications with limited evaluation budgets, and could be a natural choice.

6 Conclusion

In this paper, we showed that evolutionary optimization on a real-world legged robot
adapts both morphology and control to different external environments, suggesting
that such capabilities could be a key feature of future adaptive robots.

First, we investigated what effects different ground surfaces have on evolved indi-
viduals. We observed that there are statistically significant differences in both the con-
trol and morphology of the evolved individuals, showing that the search can adapt the
robot to different physical environments. We also investigated generalization by test-
ing individuals on previously unseen surfaces, where we observed lower performance
differences on surfaces qualitatively similar to the ones they were initially evolved on.

Our results suggest that real-world evolutionary optimization is a suitable tech-
nique for adapting both the body and control of a physical legged robot to new physical
environments. We also demonstrated how evolved individuals transfer better to qual-
itatively similar surfaces. This means that for many applications, one might not need
to do a continuous adaptation to new environments during operation, but leverage
an archive of different morphology-controller pair generated in safer, but qualitatively
similar, indoor terrains.

Our self-modifying quadruped platform allowed us to perform a large number
of real-world evaluations and thus discover solutions exploiting the physical charac-
teristics of different surfaces. We think this extension into the real-world domain is a
promising approach for the simultaneous optimization of morphology and control for
legged robots. We aim to bring our work out of the lab and into realistic terrains out-
side, and hope our work inspires others to also take on the exciting challenges faced
when doing evolutionary robotics in the real world.
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