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Abstract
Robots are used in increasingly complex environments and need to be able to
adapt to changes and unexpected events. This has traditionally been solved
by changing the control of a robot, but having an adjustable body can unlock
new and powerful adaptive capabilities. An adaptive morphology allows tuning
of the physical structure of the robot to different, often conflicting, dynamic
requirements, including speed, stability, and efficiency. It can also unlock new
functionalities that might not be possible with static morphologies, including
variable gearing and multiple locomotion modalities. Even with the potential
benefits of morphological adaptation, the methods and technology are still not
at a point where there is wide-spread use of adaptive morphologies in physical
robots.

The main goal of the thesis is to develop methods and technology to enable
adaptation of the physical body of a robot to new real-world environments. An
evolutionary approach is taken, and to what degree evolutionary algorithms
are able to exploit the dynamic morphology of a legged robot is investigated.
The feasibility of continuous adaptation of morphology in realistic outdoor
environments is also explored.

A quadruped mammal-inspired robot with the ability to continuously adjust
the length of its legs during operation has been designed and implemented as part
of the work outlined in the thesis. Evolutionary algorithms are used to optimize
both the control and morphology of the robot to different hardware conditions
and walking surfaces in the lab. To achieve this, a new gait controller concept
with an adjustable complexity is introduced. This allows evolution in scenarios
with a wide range of evaluation budgets. A final proof-of-concept implementation
of adaptive morphology is also demonstrated. Our robot was shown to be able
to adapt its body continuously while walking in different unstructured outdoor
terrains, significantly outperforming a non-adaptive approach.

The thesis concludes that adaptation of the physical body of a robot is
feasible, and in fact, already shows significant benefits with current technology
and methods. Evolutionary algorithms are shown to be effective for adaptation
of morphology in a range of different conditions. By developing new methods and
technology, as well as demonstrating their utility through real-world experiments,
we hope to inspire others to use adaptive morphology on their physical robots.
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Chapter 1

Introduction

Robots inspecting the damaged Fukushima reactor were presented with a
daunting task: to pass through a narrow duct to enter the area, traverse gaps
between platforms, move over and through various types of debris, and even
swim through murky water. Designing a robot to work across such diverse and
unstructured environments is challenging, as task and environmental conditions
may change, sometimes drastically, during operation. As such, technological
limitations meant that the eventual solution required numerous highly specialized
traditional robots, with correspondingly high numbers of deployments and
extended mission times [37].

An arguably more efficient and attractive solution would be a single ’Swiss
army knife’ robot. Capable of online morphological adaptation, this robot would
be able to match its capabilities to its immediate needs: having at one time a
large span to traverse gaps, yet at another time being able to shrink and squeeze
through narrow openings in debris fields. Shape-shifting (or morphologically
adaptive) robots have long been a mainstay in our collective consciousness1. And
with good reason; they represent an appealing future where robots have become
masters over their environment, able to adopt a variety of configurations to
meet their immediate and long-term needs and improve mission outcomes. The
underlying principle is that a variable morphology provides additional degrees
of freedom to adapt to a given environment compared to a static morphology.
This increases the likelihood that the robot can adapt and survive in the face of
unpredictable environmental conditions. The challenges presented by Fukushima,
chiefly multimodality and unpredictability, are characteristic of the type of
unstructured environment that robotic systems as a whole continue to struggle
with. In principle, morphologically adaptive robots are a promising enabling
technology to unlock a broad swathe of unpredictable environments and solve
new tasks on the fly, without having to be redesigned and rebuilt each time
they face something unexpected. Due to this promise, morphological adaptation
is an area of increasing scientific focus that encompasses a range of research
from variable stiffness robot limbs [3] to elegant origami-inspired morphing
structures [72] and various soft robots [46].

The field of Evolutionary robotics shows great promise for making use of
morphological adaptation [6]. Evolutionary techniques take inspiration from
natural evolution and optimize both control and morphology to different tasks
and environments [21]. Most work in the field, especially where morphology is
evolved, has been focused on virtual robots in simulation [55]. Some transfer
some robots to the real world through rapid prototyping techniques, both legged

1Often found in science fiction popular culture, e.g., The Transformers, or T-1000 from
the Terminator series)

1



1. Introduction

robots [80] and more unconventional configuration [31, 49], but examples where
the evolution of morphology is done directly in hardware are rare. The few that
do are typically relatively simple robots that often require human intervention
or complex external reconfiguration mechanisms [53, 94].

Many challenges need to be addressed on the way to mainstream
morphologically adaptive robots. This thesis aims to develop methods and
technology that enable a continuous optimization of the body of a legged robot
to real-world environments. This includes the development of a robust mammal-
inspired quadruped robot that can automatically change the length of its legs
during operation. Investigating to what degree an evolutionary approach is
able to exploit adaptive morphology exclusively through real-world evaluations
efficiently is also asked. Experiments are done in controlled conditions in the
lab, as well as in realistic real-world environments outside.

1.1 Research objectives

The main objective of the thesis is defined as follows:

Main objective: Develop methods and technology to enable
adaptation of the physical body of a robot to new real world
environments.

Many possible robotics tasks could be made easier by adapting the body of a
robot. This thesis focuses on basic locomotion to increase the applicability of
our findings to the robotics field in general. This is further strengthened by
using a capable robot for all proof of concept implementations.

Three research questions are asked to guide the work:

Question 1. How can artificial evolution be used efficiently for a physical
mammal-inspired quadruped robot?

Most evolutionary robotics experiments are done on virtual robots in a physics-
based simulator. This comes with many advantages, but the inaccuracies in
the simulators make the results less applicable for direct transfer to real-world
scenarios. Doing evolution in the real world comes with many challenges, many
of which are worse when using mammal-inspired quadruped robots. Some of
these will have to be pursued during the design and development of the robot
platform and gait controller, while others will have to be addressed in the
scientific approach and experimental setup.

Question 2. To what degree can we observe the benefits of adapting both
morphology and control in real-world evolutionary experiments?

This research question asks whether the evolutionary optimization of morphology
and control can be shown to be beneficial under real-world experimentation.
First, it is unclear whether a practical implementation can be achieved where the
adaptive morphology is complex enough to conform to small variations between
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Thesis outline

different environments while not adding excessive mechanical complexity or
requiring more evaluations than feasible in hardware experiments. Secondly, it
is unclear whether search algorithms will exploit a dynamic morphology, even
if it has a clear advantage for performance. Gaits are often highly adjustable,
so small changes to the gait controller can have large effects on the behavior
and performance of the robot. Adaptive morphology is often much simpler with
fewer dimensions, due to the difficulty of implementing real-world structural
adaptation. It can, therefore, be much less responsive to change than control.
Algorithms might be too focused on adapting the control to be able to optimize
the lesser responsive morphology features simultaneously.

Question 3. How can the physical body of a robot be adapted to new
and changing outdoor environments?

Question 3 goes further than the two previous questions and asks how a robot
system can adapt its body to new and changing outdoor environments. Since the
environments can be both dynamic and unknown, the robot needs to be able to
sense the environment as it walks. It also needs to take an online approach, and
continuously adapt its morphology. Reconfiguration and evaluation can both
take a considerable amount of time to perform on the robot, so a method to
intelligently decide which morphologies to test might be required for efficient
adaptation.

1.2 Thesis outline

This thesis is a collection of papers. The current chapter gives an introduction
to the thesis and the aim of the work. Chapter 2 presents relevant background
information and related work. Chapter 3 details the technology and software
used and developed in the thesis, while chapter 4 presents a summary of the
research conducted. Chapter 5 discusses the findings and puts these into the
context of the thesis and the research questions. Avenues of future work are also
described. Chapter 6 presents the conclusion. All the papers are available at
the end of the thesis. They are based on the approved post-print versions and
include minor corrections and changes to adapt them to a standard template for
inclusion in the thesis.
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Chapter 2

Background

This chapter first describes legged robotics and some of the advantages and
challenges associated with them. It then presents evolutionary algorithms, before
getting into the application area of Evolutionary Robotics.

2.1 Legged robotics

Legged robots are used extensively for a wide range of applications [88]. They
can traverse more challenging terrains than robots with wheels or tracks, and can
carry larger payloads while consuming less energy than their flying counterparts.
Robots with more legs typically have higher stability and are easier to control,
although they do consume more power.

Legged robots operate in different environments, solving different types of
tasks and working alongside other robots, animals, or humans. Hard coding
solutions for all combinations of possible outcomes are becoming impossible as
robots are used in more complex and dynamic environments. Instead, pursuing
a system where the robot can learn and adapt to changing environments and
unforeseen situations is key as robots are deployed in larger parts of society.
Most robots use some form of open-loop controllers, where the robot acts solely
based on the controller output. This is referred to as blind walking in legged
robotics, which often works well when the robot operates in controlled and
straightforward environments. The problem arises when the robot encounters
something unexpected. Closed-loop control uses measurements of the robot’s
state to adjust the command from the controller. An example of a closed-loop
approach is the use of active balance, where the sensed pose of the robot and a
calculation of its balance point can be used to actively keep the robot in balance,
and stop it from falling over. This can be used when walking over rough terrain,
or where there is a risk of being shoved [27].

An essential aspect of legged robots when considering locomotion is the
notion of stability while walking [18]. The most straightforward approach is to
compare the Center of Mass (COM) to its support polygon, defined by all legs in
contact with the ground. If the horizontal projection of the COM is within the
polygon, the robot is considered statically stable, and will not fall when standing
still (without external disturbances). The problem comes from the dynamics
of the moving robot, where inertia, friction, and elasticity in effect reduces the
size of the support polygon further as the robot moves. This severely limits the
speed of statically stable gaits, especially for robots with a significant part of
their weight in the legs. Dynamically stable gaits exploit the dynamic effect of
the system to stay upright during movement. An excellent example of this is a
one-legged hopping robot [81]. It can jump in place and stay upright through
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2. Background

advanced control algorithms but will fall if it stops moving. Dynamically stable
gaits are more complicated as they require active balancing. It does, however,
result in higher achievable speeds and better energy efficiency.

Adapting to the external environment of the robot can be very important, and
there are many examples where legged robots [23, 99] successfully adapt to the
surface they are operating on. Outdoor environments can change continuously
due to weather, which means that even robots operating in a very limited area
might need adaptation capabilities. Other aspects that can affect the robot and
the need to adapt include changes to its task, as well as other actors in the same
environment, like humans, animals, and other robots. Changes to the robot
itself can also require adaptation, including wear and tear, as well as mechanical
damage [40].

When it comes to terrain interaction in robotics, most work is done using
terrain classification [43]. This involves identifying which out of a few predefined
terrain classes a new sample belongs to. This can be a powerful technique,
but does not capture the variance within each terrain class, and does not
determine the actual features of the terrain. Another approach is to do terrain
characterization instead [71]. This involves measuring one or more features of
the terrain that might affect the robot’s performance or behavior more directly.
Examples of important terrain features used in robotics are hardness, roughness,
slope, and discontinuity [33]. Characterization would, for instance discern the
changes an environment might undergo if it started raining, and could give
different results on different parts of the same terrain. Both of these techniques
can be based on a wide range of different sensing techniques, including vision [33],
vibration [95], and haptic feedback [30].

There are many types of legged robots used in research. Six or eight-legged
robots are popular for their high stability and ease of control, but they tend to
use a lot of power. Biped or uniped robots can be very energy efficient but require
very complex control algorithms since they are incapable of statically stable
locomotion. Four-legged robots are generally considered a good compromise
between efficiency and control complexity, and are used for solving several real-
world tasks [96]. Two types of four-legged robots are popular: mammal-inspired
robots, and spider-inspired robots, sometimes referred to as sprawling type robots.
The difference is in the proximal joints (hips), where this joint in spider robots
rotate in the yaw axis, while the joint in mammal-inspired robots rotate in the roll
axis [38]. Both types of robots have advantages and disadvantages, but learning
to walk is typically considered easier for spider-inspired robots [18]. This is both
because they have larger supporting polygons due to the legs being at their sides,
but also because they can gradually progress from crawling to walking during the
learning or optimization process. When it comes to mammal-inspired quadruped
robots, several platforms are widely used in research, including Anymal [34],
HyQ [82], and Cheetah [4].

Most legged robots use their control to adapt to new and unexpected events,
but some can structurally adapt as well. Changing their body, or morphology,
can be a powerful method of adaptation. Some legged robots consist of modules
that can be manually reconfigured [28, 87], some even designed specifically for
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Evolutionary Algorithms

exploration of legged robot morphology [45]. Other legged robots can reconfigure
automatically but only have a few discrete morphology states. Examples of
this include robots that discard legs if they get damaged [54], and robots that
switch to new locomotion modes [47]. Legged robots that are able to adapt their
morphology continuously are less common. Some reconfigure the leg stance to
continuously change from a prone crawling to upright walking [7], while others
change the physical characteristics of the legs to affect the robot’s behavior [1,
92, 93].

There exists a wide range of robots with adaptive morphology also outside
legged robotics. These include modular robots [13], soft robots [91], swarm
robots [12], underwater robots [16], hybrid robots [84], tensegrity robots [78],
and origami-inspired robots [72].

2.2 Evolutionary Algorithms

Evolutionary computation is a family of algorithms that takes inspiration from
biology. In natural evolution, adaptation occurs through natural selection and
random genetic variation. An EA mimics principles by simulating a population
of solutions where a selected few individuals can reproduce, and only the
"fittest" offspring survive. There are many perspectives and taxonomies used
in evolutionary computation, but this thesis takes the approach from Eiben’s
’Introduction to Evolutionary Computing’ [25].

Figure 2.1 shows a typical implementation of a simple EA. Potential solutions
are referred to as individuals, which each contains a number of parameters
that the EA will optimize. The algorithm’s first step is to initialize the set of
individuals, referred to as the population. This can be done through a number
of methods, but the most common is to start with random individuals. Their
performance is then evaluated. The parent selection mechanism chooses which
of the individuals in the population are used for creating new individuals. This
is typically done probabilistically, with a higher chance of selecting better
performing individuals. The selected parents then undergo a mixture of
recombination and mutation. Recombination combines two or more parents
into a new individual, while mutation makes small changes to the newly created
individuals. These make up the offspring. The parents and offspring then go
through a survivor selection mechanism that removes unwanted solutions to keep
the population size constant. This is typically done deterministically based on a
simple set of rules, in contrast to the stochastic approach in the parent selection
stage. This can be based on many different measures, including performance,
age, and population diversity. The algorithm keeps generating and testing new
solutions until a termination criterion is reached.

The individuals that make up the population can be represented in a wide
range of different ways. Solutions within the original problem space are often
referred to as the phenotype of the individual, while their encoding that the
evolutionary search can work on is referred to as its genotype. Typical data
structures used for genotypes include integers and real-typed vectors, bitmaps,
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Figure 2.1: The general workings of a simple evolutionary algorithm. A
population is initialized, and offspring generated through parent selection and a
mix of recombination and mutation. Survivor selection ensures the population
size stays constant. The algorithm is looped until a termination criteria is
reached.

strings, and different types of graph-based structures. Each element of the
genotype is often referred to as a gene, while its value is called an allele.

Another important aspect of an EA is the fitness function. This function
evaluates the genotypes and returns their performance, referred to as the
individual’s fitness. It can be the calculation of a simple mathematical formula,
measurement of physical phenomena in an extensive experimental system, or
even come from humans evaluating solutions manually. Both minimization and
maximization of fitness are typical, depending on the specific application. Many
applications only focus on a single objective, while multi-objective optimization
involves problems where the performance is measured in several, often conflicting
objectives. Several objectives can be combined into one by pre-selecting the
desired trade-off between the different objectives, referred to as scalarization [15].
It can then be solved using traditional single-objective approaches. Taking a
multi-objective approach can generate a Pareto front that enables choosing the
trade-off between the different objectives after the EA has finished. Popular
multi-objective evolutionary approaches include NSGA [19, 20], SPEA [103], and
PAES [39].

One of the biggest strengths of EAs is its high flexibility. Parent and
survivor selection affects the selection pressure and can be tuned to different
requirements. Both recombination and mutation have a substantial effect on the
diversity of the offspring, affecting how the algorithm moves through the search
space. The balance between exploration—testing solutions in new areas of the
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search space, and exploitation—testing solutions close to known well-performing
individuals, can easily be adjusted by either changing evolutionary operator
types or parameters. Too much exploration tends to yield inefficient searches
with slow convergence, while too much exploitation tends to get stuck in local
optima under premature convergence.

Classic evolutionary algorithms focus on improving the performance of the
solution. Maximizing the diversity of a population, instead—the variance between
the individuals—has, in many cases, outperformed quality-focused approaches [89,
90]. Quality diversity (QD) algorithms have gained popularity in the last few
years and aim to provide a diverse set of high-quality solutions [75]. There are
many other popular algorithms that can be used instead of, or in combination with
evolutionary approaches: Reinforcement learning [9], Bayesian optimization [70],
Ant-colony optimization [77], and different types of local search [42], to name a
few. These have been shown to be very effective in many cases, while traditional
evolutionary algorithms remain a flexible and general solution that can serve as
a good starting point for most black-box optimization problems.

2.3 Evolutionary Robotics

The field of Evolutionary Robotics (ER) uses evolutionary computation
techniques to optimize different aspects of robots [6]. EAs have been successfully
applied in a wide range of settings, from high-level tasks like phototaxis with
obstacle avoidance [73] and sequential goal homing [10] to low-level tasks like gait
optimization for legged robots [26]. The most common feature to optimize on a
robot is the control, but the morphology (body) is also possible. The literature
can broadly be separated into four areas, depending on where the optimization
takes place: (i) Optimization in simulation alone, (ii) Optimization in simulation
with direct transferal to hardware, (iii) Combined optimization in hardware and
software, (iv) Optimization exclusively in hardware.

Evolution of control

Designing the control of robots is becoming more and more demanding as both
the complexity of the robots themselves as well as the environment they are
in and the task they solve increase. Many control problems have traditionally
been solved by hard-coding solutions to a few limited expected scenarios and
environments, but this is rapidly becoming an infeasible approach.

When it comes to legged robots, considerable effort is being made to optimize
the way the robot walks. There are many ways to parameterize the trajectory
and timing of a gait [99]. These can roughly be split into two groups: controllers
working in joint space and controllers in operational space (or cartesian space).
In joint space, the displacement or angles of the joints are controlled directly.
This can be achieved through oscillators like Central Pattern Generators [35]
other indirect approaches like evolvable Neural Networks [14]. The leg’s position
in the operational space can also be controlled directly, and the trajectory is often
defined with different types of splines [5, 83]. In addition to the movement, there
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are usually also parameters controlling the timing of the gait. Some controllers
have a lot of prior knowledge built-in to the representation, while others are
more unconstrained and can generate a more diverse set of gaits. Generally,
the less a gait controller is constrained, the more effort is needed for successful
optimization.

There is a wide range of different fitness measurements used in ER, with a
varying amount of embedded a priori knowledge. When it comes to evolving the
gait of legged robots, three of the most common metrics used are speed (or total
distance traveled for a set time), stability, and energy efficiency. Optimization
can be focused on one of these through single-objective optimization, or more
than one of them through multi-objective optimization.

Most work is not done on real-world robots, but on virtual robots in physics-
based simulators [55]. The main advantage of this approach is that evaluations
are very quick. It is also becoming more accessible as computational power
decrease in cost, and experiments can be run on standard desktop machines.
There is also no need to design, build, and maintain a robot system, no risk
of damage to the robot as it evaluates, and no need for continuous human
intervention during evaluations.

Many use simulators to optimize control, but transfer a select few controllers
to test on a physical robot. The problem with using a simulator is that they only
approximate the real world, and the discrepancy between the virtual robot and
the real one can severely limit the usefulness of the evolutionary process. One
part of it is that the performance is often not correctly predicted, but since the
environment is often entirely static in simulation, the robots have no incentive
to develop the robust gaits needed to work in the real world. This inaccuracy is
referred to as the reality gap [36], and dealing with it is considered one of the
biggest challenges in the ER field [24].

There are several techniques to reduce the reality gap and exploit the
simulator’s advantages while still getting solutions that work on a physical
robot [101]. One of the simplest is to add noise to the simulator to try to add
robustness to variance more substantial than the reality gap [36]. Another option
is to use local search in hardware to regain some of the performance lost to the
reality gap, referred to as memetic evolution [79]. Relying on sensor-feedback to
affect control has also been shown to be effective [58]. Self-modeling can be used
to continuously update the simulation to changes to the robot or environment [8],
and building a map of prior knowledge in simulation can then be used to adapt
efficiently in hardware [17]. Modeling the reality gap for different parts of the
search space using physical evaluations was also used successfully [41]. The
problem is that the best solutions are often the ones that are able to exploit
the dynamics of the system and the peculiarities of the environment. These are
also the ones that are hardest to simulate and predict correctly, so this approach
often removes most of the high performing individuals.

The only way to completely bypass the reality gap problem is to do evolution
exclusively in hardware. This has been done both on commercially available
legged robots like Aibo [11, 32], as well as custom robots [98, 100]. Some
solutions enable autonomous testing of new control in hardware, which alleviates
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some of the issues of hardware testing by allowing a more extensive evaluation
budget [29]. The problem with this is that using simplified environments in the
real world still leaves a gap if the robot is not optimized in the environment it
will eventually operate in.

Evolution of morphology

Optimizing the body of a robot, its morphology, can be a powerful technique
and a key to achieving resilient robots [102]. This is most commonly done as
part of the design phase of a system, either as part of a human process or an
autonomous design system [22]. Optimizing the robot’s morphology has the
potential to impact the performance and behavior of the robot in a way that
control might not be able to [44, 74]. Combining optimization of control and
morphology can, therefore, enable adaptation to a wider range of environments
and scenarios than optimizing control alone.

The theory of embodied cognition states that the mind is not the sole
source of cognition available to humans and computational systems and that
the environment, body, brain, and the interactions between these can all serve
as sources of cognition [97]. Changing the morphology of the robot during
operation might unlock possibilities to adapt to scenarios and environments
not previously considered possible when only changing control. In some cases,
changing the robot’s morphology might be the only viable option to elicit
suitable in-environment behaviors [74]. High-level reasoning often requires little
computation power, while low-level sensorimotor skills can require enormous
computational resources [52]. Taking an embodied approach to some low-level
tasks might free up large amounts of computational resources, possibly to a
point where they are now feasible for on-board use in robotics.

One of the seminal works of morphological evolution is Sims’ virtual
creatures that were optimized for swimming, walking, and jumping in a simple
simulator [85]. Most work evolving morphology also optimized control, but there
are also examples where the morphology of a robot is evolved alone [48, 86].

The simplest approach for the evolution of morphology for real-world robots
is to evolve the design in simulation, then manufacture a select few individuals
and verify them in hardware. There are several examples of this being done
for legged robots [68, 80], as well as more unconventional robot designs [31, 49].
The challenge with this approach is that the evolved individuals suffer from
the effects of the reality gap, which can be even more substantial when both
control and morphology are optimized. Combining simulation with hardware
experiments is more challenging when the morphology is also optimized. Few
robots can morphologically adapt in hardware, and a common approach is to
keep optimizing the control alone in hardware [68, 79].

Physical robots with a dynamic morphology are relatively rare in ER.
Some can be manually assembled out of modules, either made specifically for
evolutionary experiments [2] or based on widely-available LEGO bricks and
modules [50]. The problem with these is, of course, that they require human
intervention to build and test. The modular approach can be taken a step further
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and be automated reconfiguration using robot arms [53, 94]. This approach
enables more rapid generation and evaluation of individuals, but the robots are
relatively limited due to their small size and lack of sophisticated sensor and
actuation capabilities. Dynamic morphology has also been successfully used to
accelerate evolution and achieve higher robustness and quality of locomotion on
legged robots, but the morphology is typically only varied during evolution and
not during the final operation of the robot[7].
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Chapter 3

Technology and software
This chapter presents the robot build as part of the Ph.D. and the software used
for development, analysis, and visualization.
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Tibia

Figure 3.1: The DYnamic Robot for Embodied Testing (DyRET), with its
shortest leg configuration to the left, and its longest configuration to the right.

3.1 The DyRET robot

A robust robotic system with adaptive morphology was needed to investigate real-
world optimization of robot morphology. No commercial off-the-shelf (COTS)
solutions were available at the start of our work, so a custom robot was designed
and built from the ground up for use in our research, seen in Figure 3.1.

Design philosophy

Using the robot for machine learning experiments puts tough requirements on its
robustness. Many optimization algorithms start with random solutions before
gradually improving them throughout the optimization process. This means
that many poor solutions will have to be tested and endured by the robot before
better solutions are found. This has to be accounted for in the design process.

The robot needs to be able to withstand both poor gaits and morphologies
without negatively affecting the body to be useable for prolonged experiments.
The robot is designed to minimize the probability of sudden catastrophic failure,
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Figure 3.2: The major components of the robot, including sensors, actuators
and control.

but that is actually preferable to gradual degradation that affects the behavior
and performance of the robot over time. If a replacement part makes the robot
perform like it did before it broke, an experiment can be continued. If there
has been a gradual degradation, replacing the broken part might drastically
change the behavior of the whole system, which might lead to the experiment
needing to be started over. Possible failure modes of the different components
were therefore carefully considered, and solutions that give the lowest risk of
negatively affecting the experimental results were selected.

Keeping weight low is always a challenge when working on legged robots.
The most powerful servos available in the Dynamixel MX series from Robotis
were used as no other affordable alternatives that suited our requirements
were available at the start of our design phase. The closer to the maximum
specifications of the servos the joints operate, the quicker they are worn out and
the higher probability of permanent mechanical damage. Considerable effort was
therefore spent on cutting weight where possible. This was achieved by using
light-weight high-strength materials like carbon fiber and aluminum, as well as
processes like 3D printing and milling to get custom parts that fit our robot
perfectly.

Maintainability and reproducibility are both very important, especially since
this is part of a research project with collaborators with different levels of robotics
knowledge and experience. Using COTS parts allows easy and quick replacement
if they break, although supply might be an issue in the long term. Custom parts
can be tailored to the particular needs of the project, and typically perform
better, but might require excessive effort to design and produce. For the robot,
COTS parts were used where they did not compromise weight or robustness.
Custom parts were instead chosen where they had the most significant impact,
and enough parts were manufactured to minimize the chance of needing re-
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manufacture for the duration of the Ph.D. project. More details on our design
philosophy are available in [66].

Mechanical design

Sprocket drive

Encoder

Chain drive

Guide carriage

Linear lead screw

End switch

Cable carrier

Guide rail

DC motor

Figure 3.3: The reconfiguration mechanism present in the femur and tibias of
each leg.

The robot has a mammal-inspired quadruped joint configuration, seen in
Figure 3.1 All mechanical parts can either be bought as relatively inexpensive
commercial off-the-shelf components or printed on consumer-grade 3D printers.
Some parts can optionally be made in aluminum or other metals for improved
robustness. This was done in our case since the robot is used for gait learning
experiments. The main body of the robot is constructed with carbon fiber tubing
of different diameters, which ensures a stable but low weight base for the four
legs. The coxa (hip), femur (top leg section), and tibia (lower leg section) are all
revolute joints like traditional mammal robots, consisting of Dynamixel servos
from Robotis. The complete robot weighs about 5kg and operates tethered
during all experiments.

Each leg also features two custom linear actuators to facilitate changing the
leg length during operation, seen in Figure 3.3. The femur has an adaptable
length of 50mm, while the tibia can lengthen by 100mm. The longest transition,
from minimum to maximum length of the tibia, takes approximately 90s at a
speed of about 1mm/s. We chose to use plastic bushings and gliders as much
as possible when designing the actuators, replacing traditional ball bearing
solutions. Plastic alternatives do not require constant lubrication and have the
inherent dirt and dust resistance needed for rough outdoor use. More details on
the reconfigurable legs are available in Paper II.
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Electrical design and control

The robot can run tethered to a desktop computer and a lab variable 15V
bench supply, or from a laptop and a 3-cell lithium-polymer battery for outdoor
experiments. The tether features power, USB3 communication, and an antenna
cable for the GPS. There is an on-board USB hub for different sensors and
peripherals. The servos are controlled through a common serial bus, while the
linear actuators are controlled through an Arduino Mega on the underside of
the robot body.

Sensors

The robot features a range of sensors to sense its own state and the world around
it, seen in Figure 3.2.

Servos The MX servos from Robotis feature internal sensors measuring
current, voltage, and temperature.

AHRS The robot has an MTI-30 Attitude and Heading Reference
System (AHRS) from XSense. It reports linear acceleration,
rotational velocity, and orientation at 100hz.

Motion Capture The robot features four passive infrared reflectors for use with
optical motion capture systems. The University of Oslo has
an Optitrack system with 14 cameras and coverage of 4x4
meters, while CSIRO has a Qualisys system with 26 cameras
and coverage of 8x8m. Both systems achieve a sub-cm accuracy.

GPS Two c94-m8p differential GPS systems from UBlox are used for
outdoor positioning. Real-time kinematic (RTK) positioning
is utilized by having a stationary base-station to correct the
satellite data received on the robot. This results in a 2d
positional accuracy of about one cm.

Depth Camera A Realsense D435 sensor from Intel is mounted in the front
of the robot. The angle is hand-adjustable but has been kept
pointing straight down for terrain characterization. It features
an RGBD sensor that gives both a standard color image, a
depth image, and a point cloud. The rates are configurable but
were set to 6hz due to the high volume of data generated.

Foot force The end of the legs features individual OMD-20-SH-80N force
sensors from Optoforce. These report three-axis directional
force at 100hz and has been used for terrain characterization.
They are easily mounted and dismounted for operation in
different environments.
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The DyRET robot

Figure 3.4: The physical robot to the left, with the virtual robot in the Gazebo
simulator to the right.

Gait controllers

We have used two different gait controllers in our work. The first is a high-level
gait controller with human-understandable parameters. It has a direct encoding,
where the shape the leg trajectory is controlled by three parameters: The step
height, which controls how high the robot lifts each leg; the step length, which is
how long each step is; and a step smoothing parameter, which smooths out the
movement as the leg hits the ground, to allow more gentle steps. There is also a
frequency parameter that controls the number of steps per second. A balancing
wag movement was also added, where the robot leans to the opposite side of
the currently lifted leg. Both the phase and amplitude of this movement can
be controlled to potentially counteract any dynamic effects as the robot walks.
More details are available in Paper I.

We also developed a gait controller with adjustable complexity. The
coordinates of the control points in the trajectory spline are represented directly.
Timing is controlled through a frequency and lift duration parameter, and the
same balancing wag from the high-level controller is implemented. The controller
features a dynamic genotype-phenotype mapping that allows the the controller’s
complexity to be adjusted for different evaluation budgets and environmental
requirements. More details available in Paper IV.

Simulation

A virtual version of the DyRET robot is implemented in the Gazebo simulator,
seen in Figure 3.4. Gazebo supports the ODE, Bullet, Simbody, and DART
physics engines, and is fully integrated with the ROS framework running on the
rest of the robot. All actuators are implemented on the virtual robot, and the
simulator exposes the same topics and services available on the physical robot.
This ensures that all software will be able to work seamlessly with both the
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Figure 3.5: A handful of the many iterations the robot has been through during
the project.

physical and virtual robot. A custom python server/client job manager has been
implemented to enable running simulation jobs across different computers and
cloud solutions. More details are available in Paper IV.

Robot iterations

The DyRET robot has been through many iterations during the project. A few
selected few can be seen in Figure 3.5.

Paper I: The initial robot design featured a static morphology with reflective
markers for motion capture and an AHRS for stability measurements.

Paper II and III: Adaptive morphology was implemented, as well as a redesigned
carbon-fiber chassis.

Paper IV: A virtual robot in simulation was developed, along with new, more
powerful servos for the femur and tibia for hardware experiments.

Paper V: This paper involved more extensive real-world evolutionary
experiments, and many parts were improved for increased robustness and
reliability. The reconfigurable length of the femur was doubled to allow a broader
range of morphologies. New silicone toes were also added to handle different
walking surfaces better.

Paper VI: Both an RGBD-camera in the front and force sensors in all four feet
were added for terrain measurements. The USB system was upgraded to USB3
to support the higher bandwidth needed for the depth camera. A GPS antenna
was also added to enable precise outdoor positioning.

3.2 Software

The whole software system uses the Robot Operating System (ROS)
framework [76]. Low-level control code is written in C++, while some higher-level
functions and all visualization and analysis code is written in Python.
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Figure 3.6: Overview of the software system for the robot.

Figure 3.6 shows a system overview. We have an experiment manager node
that oversees everything and runs the specific code necessary to start and track
the experiments. It sends walking trajectories to the trajectory controller, which
in turn selects a specific gait to use to achieve that trajectory. This node interfaces
either to the physical robot or to a virtual robot in the Gazebo simulator. A gait
evaluator node evaluates the performance and behavior of the current gait and
morphology, based on position and sensor data received from the simulator or
physical robot. All data is also sent back to the experiment manager for logging.

Other frameworks and software used

This is a short list of the software and frameworks used in the thesis. This list is
primarily included as a reference for anyone doing related work.

ROS Robot Operating System (ROS) is a framework for
collaborative robotics software development. We use C++
and Python for our custom code, and interface to many
other packages.

Gazebo The Gazebo simulator interfaces to ROS, and includes several
physics engines like ODE, Bullet, Simbody and DART.

SplineLibrary The SplineLibrary by Elliott Mahler is a powerful C++
framework for generating and manipulating splines of
different types.

Sferes2 A template-based C++ framework for evolutionary compu-
tation.
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RabbitMQ Open source message-broker software that enables abstract
message passing over the network through libraries in all
major programming languages.

PCL The Point Cloud Library (PCL) is an open source library for
point cloud and 3D geometry processing, written in C++.

OpenCV Cross-platform framework for real-time computer vision
functions.

Jupyter notebook Web-based interactive computational environment for
python programming, used for analysis and visualization of
data.

Seaborn Python visualization library based on matplotlib.

Overleaf Online latex collaborative writing and publishing tool used
for papers and the thesis.

Illustrator Vector graphics editor from Adobe, used for production of
illustrations and diagrams.

DaVinci Resolve Color correction and non-linear video editing program from
Blackmagic design.

Adobe Audition Digital audio workstation from Adobe, used for recording
voice-overs for videos.

Clion Cross-platform IDE for C and C++ from JetBrains, used
for low level coding.

PyCharm Cross-platform IDE for python from JetBrains, used for
scripting and programming of sensor and modeling code.

Fusion360 CAD and CAM package for design, simulation and
manufacture of 3d parts.

20



Chapter 4

Summary of papers
This chapter provides summaries of the papers included in the thesis. Section 4.1
gives a high-level overview of how the papers relate to the research questions,
while Section 4.2 goes into detail on each individual paper.

4.1 Overview

The six papers included in this thesis iteratively address the three research
questions, and also detail the design and development of the robotic system
needed to perform the experiments.

Figure 4.1 shows how the papers are connected to the research questions.
Paper I describes our initial approach to answering the first research question
before we started investigating the second question in Paper II and III. We
decided to revisit parts of the first question in paper IV, after seeing that our
previous solution was not optimal. After improving our controller, we were able
to wrap up our investigation of the second question in paper V. Finally, paper
VI describes our work on the third and last research question.

Table 4.1 gives a short overview of the aim, methods, and results of each
paper.

Paper V
Journal*

Paper VI
Journal*

Paper III
GECCO

Q1: How can real-world artificial evolution be done efficiently?

Q3: How can the body of a robot be continuously adapted?

Q2: Benefits of adapting both morphology and control?

Paper IV
EvoApps

Paper II
ICRA

Paper l
SSCI

Figure 4.1: All the papers included in the thesis, grouped by the research
questions they address. Please see Section 1.1 for the full research questions.
*These journal papers are under review at the time of thesis submission.
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Table 4.1: Overview of the aims, methods, and results for the papers in the
thesis. The last two papers are journal papers under review at the time of thesis
submission.

Aim Methods Results
I

SS
C
I

• Investigate feasibility of
multi-objective optimiza-
tion in hardware alone.
• Design and build robot
platform.
• Develop a suitable high-
level gait controller.

• Comparison of single-
objective and multi-
objective optimization of
control in hardware, with
speed and stability as
fitness measures.

• Demonstration of real-
world multi-objective evo-
lution.
• New high-level gait
controller.
• A single-objective ap-
proach is not sufficient.

II

IC
R
A

• Implement adaptive
morphology on our robot
platform.
• Investigate potential
benefits of adaptive mor-
phology.

• Lab experiments under
different hardware condi-
tions.
• Outdoor experiments in
different environments.

• Proof of concept imple-
mentation of a mechani-
cally adaptive robot.
• Demonstration of the
potential benefits of adap-
tive morphology.

III

G
E
C
C
O

• Investigate adaptation
to hardware limitations
using evolutionary algo-
rithms.

• Multi-objective co-
evolution of morphology
and control with
differences in available
servo torque.

• Demonstration of evo-
lutionary adaptation to
hardware limitations.
• Evolution utilizes both
control and morphology.

IV

E
V
O
A
P
P
S

• Develop a new gait
controller with adjustable
complexity.
• Investigate interaction
between controller com-
plexity and evolvability.

• Comprehensive multi-
objective evolutionary
runs in simulation.
• Limited multi-objective
evolutionary runs in
hardware.

• Development of a new
gait controller approach
with proof of concept
implementation.
• Demonstration of inter-
actions between controller
complexity and search per-
formance.

V • Investigate adaptation
to different walking sur-
faces through evolutionary
techniques.

• Multi-objective co-
evolution of morphology
and control on different
carpets in the lab.

• Demonstration of evo-
lutionary adaptation to
different walking surfaces.

VI • Develop method for
continuous adaptation to
unstructured terrains.
• Comparison of adap-
tive and non-adaptive ap-
proaches to walking on
unstructured terrains.

• Modeling of how terrain
affects efficiency for differ-
ent morphologies.
• Adapting to previously
seen homogeneous terrains
in the lab.
• Adapting to previously
unseen heterogeneous ter-
rains outside.

• Proof of concept imple-
mentation of continuous
morphological adaptation
on real-world terrains.
• Demonstration of the
benefits from morphologi-
cal adaptation under real-
world conditions
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4.2 Papers

This section gives the motivation behind each individual paper, in addition to a
summary. The full papers are available at the end of the thesis.

4.2.1 Paper I

Multi-objective Evolution of Fast and Stable Gaits on a Physical
Quadruped Robotic Platform
Tønnes F. Nygaard, Jim Torresen, Kyrre Glette
In 2016 IEEE Symposium Series on Computational Intelligence

This first paper lays the foundation for doing real-world evolutionary
experiments. This is done by developing a high-level gait controller and robotic
platform that enables multi-objective evolution on a physical quadruped mammal-
inspired robot without aid from physics simulators.

Figure 4.2: The first iteration of the quadruped robot, used in Paper I.

Motivation

There are very few examples of real-world evolutionary robotics research being
done on physical legged robots. When looking at mammal-inspired quadruped
robots, there are even less, and most only employ short single-objective runs.
Being able to do larger multi-objective evolutionary runs under the strict
evaluation budgets in hardware would allow evolutionary robotics techniques to
be used for a much broader range of applications.

Summary

Doing evolution directly on a physical legged robot is very challenging. One of
the biggest issues is that each evaluation can take a considerable amount of time,
which severely limits the available evaluation budget. The physical robot is also
prone to gradual degradation and catastrophic mechanical failure.
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To enable evolution under a limited evaluation budget, we implement a
new high-level gait controller that produces a continuous, regular wave gait.
Seven human-understandable parameters shape the trajectory of each leg. We
demonstrate this new controller in both single-objective and multi-objective
approaches to evaluate its feasibility for hardware-only evolution.

Our results show that single-objective evolution is insufficient when using
speed and stability as fitness measures. Evolving only for speed results in
individuals with a very high probability of falling. Evolving only for stability
results in individuals that move too slow for practical use. Multi-objective
evolution, however, yields solutions with a wide range of different trade-offs
between the two objectives. We also demonstrated that our new high-level gait
controller was a good fit for our limited evaluation budget.

The high-level gait controller is used directly in Paper II and Paper III, before
being replaced in Paper IV.

4.2.2 Paper II

Self-Modifying Morphology Experiments with DyRET: Dynamic
Robot for Embodied Testing
Tønnes F. Nygaard, Charles P. Martin, Jim Torresen, Kyrre Glette
In 2019 IEEE International Conference on Robotics and Automation

In this paper, we present our robot’s new adaptive morphology. We demonstrate
the potential benefit of morphological adaptation by testing two hand-picked body
shapes under different conditions, both in the lab and in outdoor environments.

Figure 4.3: The second iteration of the robot, with dynamic morphology. This
image was taken during one of the outdoor experiments in Norwegian winter
conditions.
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Motivation

Allowing a robot to change its own body during operation increases its adaptive
power, potentially allowing higher performance and the ability to adapt to a
broader range of environments and tasks. It is not self-evident how this could
be implemented on a mammal-inspired quadruped robot like ours. It is also
unclear to what degree having a dynamic morphology for this type of robot
would actually be beneficial, and if it would improve performance over traditional
static morphologies.

Summary

Choosing how much and which parts of a robot’s body is made adaptable will
severely affect the impact on behavior and performance. The choice often involves
a trade-off between how effective the change is on one side, and increased weight
and mechanical complexity on the other. It can also be hard to know what effect
the morphological adaptability will have before it is implemented and tested on
the actual robot, and to what degree this will be useful in the environment it
will eventually operate in.

In the paper, we present our shape-shifting robot platform with the ability to
change the length of its legs during operation. We introduced our hypothesis: No
single robot morphology performs best for all situations, tasks, or environments.
To test this, we hand-picked two dissimilar body shapes to test, one with the
shortest possible leg length, and one with significantly longer legs. We tested
them under different conditions, both in the lab and outside. Inside, we tested
the two morphologies with different supply voltages to the actuators. Lower
supply voltage leads to a reduction in available joint torque of about 20%, which
makes it much harder for the robot to walk. Outside, we first tested the robot
on a flat concrete surface in a covered garage, before taking it outside on an
icy footpath that was considered a much more challenging environment for the
robot.

We saw that the tall robot was able to achieve higher speed in the lab
conditions than the one with short legs, but this flipped once the voltage was
reduced, where the short-legged robot now outperformed the longer one. Outside,
we saw that the tall robot performed best in the garage environment, while the
short-legged robot walked fastest on the icy path. This corresponded well to
the results indoors. In both experiments, we saw that longer legs were better in
the less demanding environments, while shorter legs worked better for the more
challenging ones.

This is the robot design that is used for the remainder of the papers in the
thesis, with small modifications for increasing robustness and adaptability.
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4.2.3 Paper III

Real-World Evolution Adapts Robot Morphology and Control to
Hardware Limitations
Tønnes F. Nygaard, Charles P. Martin, Eivind Samuelsen, Jim
Torresen, Kyrre Glette
In 2018 Proceedings of the Genetic and Evolutionary Computation
Conference

This paper demonstrates morphological optimization to hardware limitations
through the use of evolutionary algorithms based exclusively on real-world
evaluations. Evolution is able to exploit both the control and morphology when
adapting to the reduced actuator torque.

Figure 4.4: Comparison of the shortest and longest legged individuals used for
evolution.

Motivation

Artificial evolution is a good candidate for optimizing robot morphology. In the
field of Evolutionary Robotics, however, this has almost exclusively been done
in simulation, which suffers from the reality gap when the results are transferred
to the real world. Evolving the body shape directly in the real world bypasses
these issues, and allows adaptation to intricate and rich environments that can’t
be replicated in simulation.

Summary

There is no guarantee that evolution is able to exploit a shape-shifting
robot, especially in a real-world experiment with a limited evaluation budget.
Optimizing the gait controller is an easier task, as changes have a more direct
effect on the behavior and performance of the robot, meaning that optimization
might not be able to focus on morphology at all when both are being optimized
at the same time.
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In this paper, we describe multi-objective evolution of control and morphology
under different hardware conditions. The servo’s voltage is varied between
different evolutionary runs, reducing the available actuator torque by about 20%.
After the evolutionary runs, we also hand-pick some individuals evolved at the
higher voltage and re-test them under lower voltage. This gives us a baseline
of how lowering torque affects individuals and allows us to better analyze the
differences in the individuals evolved under different conditions.

When reducing the voltage on a few hand-selected individuals, we saw
significant reductions in fitness for all but the slowest individuals. Evolution
was able to adapt to the decreased torque and achieve similar performance
on individuals of low and medium speeds. We found statistically significant
differences in the two populations for both control and morphology, showing
that evolution utilizes both to achieve the results.

4.2.4 Paper IV

Evolving Robots on Easy Mode: Towards a Variable Complexity
Controller for Quadrupeds
Tønnes F. Nygaard, Charles P. Martin, Jim Torresen, Kyrre Glette
In 2019 European Conference on the Applications of Evolutionary
Computation

In this paper, we introduce our new adjustable complexity controller concept.
We motivate and demonstrate the concept through simulation and real-world
experiments. Being able to adjust the complexity of a controller allows the same
controller to be used for both simulation and hardware evaluation budgets, as
well as a range of different environments with distinctive requirements.

Figure 4.5: The physical robot is seen to the left, with its virtual counterpart in
the Gazebo simulator to the right.

Motivation

Choosing the right gait controller complexity can be quite challenging. Simple
gait controllers do not require as much effort to optimize, but also have less
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flexibility. This limits the range of possible gaits, which might not allow enough
distinct gait types to be useful for a wide range of environments or tasks. More
complex gait controllers are able to produce a broader range of gaits that work
well in more situations, but they also require substantially more effort to optimize.
Hand-selecting the controller complexity early in the development process can
be challenging, especially with changing needs.

Summary

Doing evolution in simulation and hardware allows very different evaluation
budgets. In hardware, each evaluation can take a long time, sporadic human
intervention is often needed, and there is always a chance of mechanical failure.
Therefore, real-world evolution typically has low evaluation budgets that limit
the complexity of controllers and morphology. The evaluations in simulations
are most often fully automated, and additional computational resources are now
so cheap that immense evaluation budgets are possible. The complexity of a
controller, which directly affects the effort needed to optimize and the budget
needed to do so successfully, is typically chosen while designing and implementing
a gait controller. This means that a trade-off must be chosen early in the design
process, potentially limiting the types of experiments possible later on.

We propose a new gait controller concept with a dynamic genotype-phenotype
mapping. The controller complexity can be tuned by adjusting a single parameter.
The complexity can be reduced when hardware experiments demand it or
increased for simulation-based experiments with cheaper evaluation mechanisms.
It can also easily be tuned to the requirements of the environment or task the
robot is solving, which can conserve valuable evaluation time.

We test various complexity parameters in simulation and show through
extensive evolutionary experiments that it conforms to our expectations regarding
different evaluation budgets. We also verify our results with experiments in the
real world, which supports the findings in simulation.

The controller concept is used for the last two papers of the thesis.

4.2.5 Paper V

Environmental Adaptation of Robot Morphology and Control through
Real-world Evolution
Tønnes F. Nygaard, Charles P. Martin, David Howard, Jim Torresen,
Kyrre Glette
In review (journal)

We demonstrate evolutionary optimization of morphology and control in
different real-world environments. The evolved individuals are also tested on
other surfaces, and show more similar performance on quantitatively similar
terrains, supporting the notion that this technique can be generalizable to a
wide range of environments.
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Figure 4.6: The robot on the four different surfaces used in the experiments.
The robot was evolved on the top and bottom carpet, while the left and right
was used as control for generalization tests.

Motivation

Robots operate in more and more complex environments, and hard-coding
how the robot should react to every imaginable situation it might encounter
is impossible. One of the main advantages of legged robots is their ability to
traverse difficult terrains, but it is essential for the robot to have the ability to
adapt to its surroundings for it to do so efficiently. This is traditionally done by
adapting the gait of the robot, but having a body that can change could give the
robot even more options when adjusting itself to the demands and peculiarities
of new and changing terrains.

Summary

Successfully demonstrating environmental adaptation through real-world
evolution is challenging. The controller and morphology have to be reasonably
complex to be able to adapt to minute differences in walking surfaces, which
requires large evaluation budgets. The more evaluations that are needed, however,
the higher the chances of gradual degradation or catastrophic mechanical damage
invalidating the results of the experiments.

We do multi-objective evolution of morphology and control on two different
carpets with different hardness. We do multi-objective evolution on both surfaces,
and evaluate and compare the resulting populations. We also evaluate some
of the evolved individuals on two new surfaces with a different texture than
the original surfaces, to investigate to what degree the individuals found during
evolution will generalize on qualitatively similar terrains.

The evolved individuals showed significantly different control and morphology
for evolution on the two carpets. The evolved individuals showed more similar
performance when walking on qualitatively similar surfaces to the ones there
were evolved on, suggesting the technique might be effective for adaptation to
quantitatively similar outdoor environments as well.
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4.2.6 Paper VI

A Morphologically Adaptive Quadruped Robot in the Wild
Tønnes F. Nygaard, Kyrre Glette, Charles P. Martin, Jim Torresen,
David Howard
In review (journal)

In this paper, we demonstrate a system that is able to continuously and
efficiently adapt the morphology of our robot to real-world unstructured terrains.
The fact that this can be done quickly and with only a minimal baseline dataset
suggests adaptive morphology could be an effective technique with many practical
applications.

Figure 4.7: The robot at the Australian site used for all the experiments in the
paper.

Motivation

Morphological adaptation of legged robots is a powerful technique, and being
able to do so in the robot’s operating environment directly ensures a good fit.
There are two significant challenges to achieving this. The first is that natural
environments are rarely homogeneous, and might change significantly, even
over short distances. The second is that real-world terrains change quickly and
often. It can be the effect of weather conditions like rain, wind and changing
temperatures, or external disturbances from humans, vehicles, or other robots.
For a robot to be able to operate efficiently in these types of environments, they
need to adapt continuously during operation.

Summary

Adapting a robot’s morphology in the real world is very challenging, especially
when it is to be done continuously. Switching between morphologies on our robot
can take up to a minute and a half, so testing all possible morphologies each
time the terrain changes is impossible. A baseline model allows bootstrapping of
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the problem and lets the robot intelligently search for the best morphology for
the environment while still learning during operation.

Large indoor boxes with different terrain materials are used to let the robot
build a baseline dataset of how different morphologies perform on various types of
terrains. A simple adaptation algorithm is implemented and tested on previously
seen homogeneous terrains in the lab. The robot is then taken outside, where
it uses an extended adaptation algorithm on previously unseen heterogeneous
terrains. The adaptation approach is compared to selecting the best performing
all-rounder from the terrains inside.

We show that the system works well inside, where the robot is able to utilize
the baseline model to efficiently change body shapes when needed. This ensures
that energy efficiency is kept high, even for terrain transitions that require very
different body shapes. When we run the robot outside on previously unseen
heterogeneous terrains, we see that it is able to continuously optimize the body
while walking. It does so more efficiently on terrains similar to the baseline
dataset, but it is also able to learn and retain the knowledge on new terrains it
encounters during operation. The adaptation algorithm is shown to outperform
the best all-round morphology from the baseline dataset.

31





Chapter 5

Discussion
This chapter starts with looking at the contribution of the papers in relation
to the original research questions of the thesis, before describing the approach
and the design choices made. Limitations are then discussed, before describing
avenues for future research.

5.1 Research questions

Question 1. How can artificial evolution be used efficiently for a physical
mammal-inspired quadruped robot?

The main difficulty when it comes to doing evolution in hardware on a
physical robot is to tune the process to the low evaluation budget. Restricting
the size of the search space allows the evolutionary process to converge in fewer
evaluations. Limiting it too much, however, will make the robot unable to exhibit
the full range of behaviors required to tailor to more than a very narrow range
of environments.

In Paper I, this was approached by hand-designing a high-level gait controller
with human-understandable parameters. It was shown to be well suited for
multi-objective evolution in hardware, and we showed that the evolutionary
search was able to generate solutions with a wide range of trade-offs between
speed and stability in a reasonable amount of time.

We realized that our controller was more limited than we initially thought
during work on Paper III. It was well suited for the most straightforward
environments in the real world. The problem came in the more complex
environments that require a more exotic walking pattern. This was simply
not possible to represent with the chosen high-level parameters. We also saw
that the controller was unsuited for situations where the evaluation budget was
much higher, like what is usually the case in simulation. The search converged
after only a minute or two of simulation, which does not take advantage of the
computational resources available—one of the main advantages of simulation.

In Paper IV, we present a new idea where the complexity of the controller
itself can be adjusted. We use a dynamic phenotype-genotype mapping that
is scaled by a single complexity parameter. This means that the search space
can be kept smaller for situations where we either have a minimal evaluation
budget or an environment that does not need more than a simple gait. For more
demanding environments, or where we have larger evaluation budgets, the search
space can be increased to include a broader range of gaits.

We have demonstrated that real-world evolution can be done efficiently on
our mammal-inspired robot through these two papers. The key to doing this
is controlling the difficulty of the search through the gait controller complexity.
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We demonstrated that this could be done successfully by hand for simple
environments, but also showed a more general solution where the complexity can
be adjusted on-the-fly to suit a wide range of evaluation budgets or environmental
requirements. Utilizing simulations in combination with real-world experiments
is not needed to achieve effective optimization.

Question 2. To what degree can we observe the benefits of adapting both
morphology and control in real-world evolutionary experiments?

We started working on this question in Paper II, where we hand-picked two
dissimilar body shapes to evaluate in different environments. We believed the
longer legs would do better in simple and less demanding environments, as the
additional length allows the robot to take longer steps with the same rotational
velocity of the servos. The shorter legs cannot match the step length, but will
in turn have the higher force surplus needed in demanding environments. Both
indoor and outdoor experiments supported this, which implies that the general
notion of adjustable leg lengths could be beneficial in adjusting to different
operating environments.

In the next two papers, we used artificial evolution to optimize both control
and morphology. Paper III looks at how evolution adjusts to a loss of actuator
torque of about 20%, and we saw that evolution allowed the robot to retain its
performance for low and medium speeds after the reduction. Paper V investigates
how evolution would adjust to changes in the walking surface. We found that the
search was able to adapt the robot to the different surfaces and that the solutions
found would generalize to other previously unseen terrains as well. In these
two papers, we saw significant differences in both control and morphological
parameters between the different populations. This shows that evolution can
exploit the adaptable morphology, and also serves as a demonstration of the
benefits of a shape-shifting robot.

Question 3. How can the physical body of a robot be adapted to new
and changing outdoor environments?

This question was addressed in Paper VI. Outdoor terrains are unstructured
and change over time, so an approach that successfully adapts the robot’s
morphology in these types of terrain needs to do so continuously. There are two
significant challenges to achieving this. The first is that adjusting the robot’s
morphology often takes much time, in our case, up to a minute and a half for
the most extreme changes. Evaluating locomotion in unstructured terrains will
also be very noisy, so getting an accurate assessment of performance makes the
process even more time-consuming. The second is that terrains can be very
dynamic, and change considerably from step to step. The combination of these
two makes it impossible to test all possible morphologies for each terrain change
detected. A model-based approach allows the robot to select which morphologies
to test based on previous experience, making the process feasible on a physical
robot. In our case, we made an adaptation algorithm that transitions between
the most energy-efficient morphological configurations based on a model and the
terrain it senses. The model is built from experiments in controlled conditions,
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and we test the system outside on previously unseen and unstructured terrains.
We also compared performance to choosing the best all-round static morphology
and found that continuous adaptation outperformed it on all the terrains we
tested. As technology progress, we expect the cost of onboard mechanical
reconfiguration to reduce, and as methods and technology develop further, we
expect the efficiency and therefore reward of reconfigurability to increase. The
fact that the robot in our very simple proof of concept study performed so
well gives strong evidence that efficient model-based continuous adaptation of
the physical body of a robot can not only be feasible but highly beneficial in
changing real-world environments.

5.2 Approaches and design choices

Many types of robots could be used in our research. Legged, wheeled, underwater,
flying, soft, and various types of hybrid robots can all benefit from adaptive
morphology. We chose to pursue legged robots for their interesting possibilities
and challenges and widespread use in ER. They have been praised for their
potential ability to traverse rough terrains, though only recently have successful
commercial products with advanced capabilities been made available. We wanted
to focus on applicable real-world robots, and legged robots seemed to be in
the right stage of development and adoption to give us the highest degree of
impact from our work. Many types of legged robots could be used for our
research, but we chose to use a mammal-inspired quadruped design, which
gives a good trade-off between efficiency and control complexity. At the start
of the project, no commercial off-the-shelf robot was available with dynamic
morphology. Modifying already existing robot platforms would not give the level
of integration we wanted to achieve for the dynamic morphology, and it was
not deemed to give a better return-on-investment in terms of time and effort
than building a new robot. We therefore started the design and development
of a new mammal-inspired quadruped robot with built-in dynamic morphology.
This has taken a considerable amount of time and effort throughout the project,
but doing the long experiments we have done in hardware would not be possible
without a custom robot.

Robots are used for a wide range of tasks, even within the field of Evolutionary
Robotics. We chose to look at basic locomotion, specifically walking gait and
morphology optimization. Optimizing or adapting the walking pattern of legged
robots is a challenging undertaking, especially when considering real-world
environments. Classic gait optimization approaches based on mathematics and
physics have successfully been used to allow a legged robot to traverse rough
and unstructured terrains, but these are typically tailored to specific robots and
the environments they operate in. Using biologically inspired methods to give
the robot the ability to learn how to walk lets it adapt to the environment
it operates in and the task it tries to perform, even as these might vary.
Damage and unexpected changes to the robot can also disrupt gaits developed
through traditional approaches, while a robot capable of learning has a chance
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to find alternative walking methods that might not be as affected. Even looking
specifically at legged robot locomotion, there are many different performance
measures used. In Paper I, we tried single-objective optimization for both speed
and stability, respectively, but found that these needed to be used in conjunction
to get practically applicable gaits. This was also used for subsequent papers,
where we optimized both control and morphology. In our last paper, we only
optimized the body of the robot while the control stayed the same. We expect
to see much less of a difference in the speed since the controller is not evolved,
and we considered stability to be too noisy to give a good measure of the quality
of different morphologies when used in unstructured terrain outside. Instead, we
decided to use the energy efficiency of the robot, based on the cost of transport
calculated using the power draw from the servos. There are many alternatives
to both the type and implementation of our fitness measures, but our choices
were considered suitable for our needs and resulted in successful adaptation in
both indoor and outdoor environments.

Adaptive morphology can be implemented in many different parts of the robot.
Since our focus was on locomotion, the goal was to maximize impact on the
system’s dynamics in a way that would affect the behavior while walking. This
has to be achieved without adding too much weight or mechanical complexity to
the robot. Several different approaches were considered, but it was ultimately
decided on varying the length of the legs. This was considered feasible with
current technology while still allowing the robot to have a satisfactory degree
of flexibility to impact the behavior and performance. It turned out to be an
excellent choice, as evolution was successfully able to evolve it alongside control,
while the simple adaptation algorithm significantly outperformed a non-adaptive
approach in unstructured outdoor terrains.

We chose to do almost all our work purely in hardware. Many research groups
are working on reducing the reality gap using different approaches combining
simulations and hardware experiments. We saw that trying to investigate
morphological evolution in hardware while at the same time relying on simulation
could quickly draw too much focus away from our main goal of morphological
adaptation in the real world, requiring us to do extensive work on reducing the
reality gap instead. Many techniques can reduce the reality gap to manageable
levels for simple environments but were not considered sufficient in our case,
as we wanted the robot to demonstrate morphological adaptation in changing
outdoor environments in the real would.

5.3 Limitations and future work

Dynamic morphology was implemented on the robot through variable femur and
tibia lengths. This gave us enough flexibility to affect the robot’s behavior to
a sufficient degree, but it is still considered a relatively simple morphological
parametrization. We have been focusing on working with robots relevant to
solving real-world problems, and part of this was minimizing any reduction in the
robot’s ability to solve other tasks while carry heavy payloads and other on-board
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sensors. This put limitations on the degree of morphological adaptation we
could add, and a different approach could allow a much more flexible structure.
Another rotational joint above the hip could, for instance, allow transitions
between mammal and spider-inspired morphologies. We have only looked at
adaptive morphology affecting the locomotion of the robot, but adapting sensor
morphology could also be interesting, and an embodied solution might improve
terrain adaptation capabilities. We also take a very traditional mechanical
single-robot approach to adaptive morphology. Many approaches are rapidly
becoming more mature, and equally capable self-adaptive robots from modular,
swarm, or soft robotics might soon be a reality. New and exotic shape-shifting
materials can be key to enabling more dramatic morphological variation and
reduced mechanical complexity.

By doing everything in the real world, we have a very limited evaluation
budget. This, in turn, makes us unable to use very complex representations of
control and morphology that would require too many evaluations to optimize
on the physical robot. Even though the results we do get are very relevant for
solving real-world tasks, we have not been able to investigate the underlying
effects to the same degree someone doing experiments in simulation would be able
to. We have, however, been able to verify our methods and techniques in realistic
real-world environments, which we believe increases the relevance and impact of
our work considerably. Even though optimizing the robot in its final operating
environment is the only way to bypass the reality gap completely, there is much
useful information that can be extracted from a virtual robot. There are already
many methods of combining simulation with real-world experiments. Having
a morphologically adaptive robot capable of the type of long experiments we
have done in hardware might benefit from different approaches than previously
used, where simulation has typically been the focus with small experiments with
a handful of real-world evaluations.

Our focus has been to use a highly capable robot with applicability to other
applications in robotics to increase the impact of our work and encourage the
adoption of adaptive morphology in new areas of robotics. The issue with this
is that a capable robot requires considerable more effort to design and build,
when compared to a more simplistic and minimal robot. Other approaches in
modular and swarm robotics have been able to utilize parallel evaluations in
hardware with several physical robots, but this is not possible with a robot like
ours. Fully autonomous test setups are also much more challenging to make for
legged robots, especially for mammal-inspired configurations. Due to this, all our
experiments have required some degree of human intervention, again limiting the
extent of our experiments. Further developing the platform and the supporting
experimental infrastructure around it could allow a fully autonomous test rig,
which would enable much larger evaluation budgets. This could allow both
longer evolutionary runs to solve more complex problems and a higher number
of runs that could give higher statistical confidence in the results. Removing the
reliance on a human operator might also enable external researchers to use the
platform remotely.

We chose to only look at legged robot locomotion, and specifically the gait
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and morphology when walking straight forwards. This is a very low-level problem
and can be hard to combine with other high-level concepts or tasks as the robot
only walks straight forward. The robot, however, already features a range of
different sensors and can carry payloads needed to solve more complex tasks.
Adaptive morphology might give an edge in different high-level tasks as well, and
our robot could be a possible candidate for use in these types of experiments.

Different gait controllers are used in our papers, but they all take an open-
loop approach. The actual state of the legs and the body are not sent back to the
controller, so no adjustment is made at the controller level. This means that the
controller cannot react to the environment by tuning its output, and adaptation
to new environments can only be made by optimizing of the parameters to
the gait controller. Allowing closed-loop control would potentially enable more
fine-grained and reactive adaptation, and evolution could still optimize both
high-level features and the parameters of the reactive control.

Only morphology was optimized when doing continuous adaptation in the
real world. An important aspect of that part of the work was getting an accurate
measure of terrain characteristics to guide the algorithm in selecting suitable
morphologies. We selected terrain features that were invariant to the morphology
of the robot – changing the length of the robot’s legs did not affect the terrain
measurements. We considered also adapting the control, but early testing showed
that achieving the same invariance to morphology was much more challenging
when varying the gait. More advanced methods for world modeling might be
used to allow adaptation of control, which would give the robot even more
flexibility than when only adapting morphology. This would most likely lead
to the robot being able to adapt to an even more extensive range of terrains,
supported by the fact that we saw significant differences in both morphology
and control in all evolutionary experiments where they were both evolved.

38



Chapter 6

Conclusion
The main objective of the thesis was to develop methods and technology to
enable adaptation of the physical body of a robot to new real-world environments.
The papers in the thesis demonstrate evolutionary optimization of both control
and morphology for offline adaptation to changing hardware conditions and
walking surfaces, as well as a model-based continuous online adaptation of
morphology in the real world.

The main contributions of the thesis can be summarised as follows:

• A mammal-inspired quadruped robot with self-adaptive leg lengths has
been designed and built, and is available as an open-source hardware
project.

• Evolutionary algorithms were shown to be able to exploit the dynamic
morphology of a physical robot during co-optimization of control and body
exclusively in the real world.

• A new gait controller concept with adjustable complexity was developed
that allows the same controller to be used for both simulation and real-world
experiments. It can also be adjusted to environmental requirements.

• A simple model-based online adaptation method was developed that can
adapt the morphology of a robot efficiently during operation. This was
demonstrated in the real world.

• The benefit of the robot’s adaptive morphology was demonstrated both
when experiencing changing hardware conditions and walking surfaces in
the lab, as well as when walking on different terrains in the real world.

Evolutionary algorithms can successfully utilize the adaptive morphology
of a mammal-inspired quadruped robot through experiments exclusively in the
real world. The demonstrated feasibility and benefit of adapting morphology
is important, especially when optimal leg shapes are unknown. This finding
could extend to the field of robotics in general, where optimization is often
pursued without considering different morphologies. The results of the thesis
show promise for an embodied approach to solving challenging robotics problems
in the real world.
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Abstract – The field of evolutionary robotics shows great
promise, but is held back by the lack of results applicable
to real world problems or other research fields. The reality
gap effects present when moving from virtual to real robots
makes evolution based on simulation inefficient for continuous
adaption to changing morphology or environments. Evolution
on the physical robot does not share these challenges, but
each experiment in hardware is limited by the high time
requirement of each evaluation. In this paper we suggest
using a high level controller with multi-objective optimization
of speed and stability to achieve a range of robust gaits for a
quadruped robot that does not require excessive tests on the
real robot. Using multi-objective evolutionary optimization
on the physical robot, we achieved a Pareto front with high
performing and robust individuals showing different trade-
offs between speed and stability. Single objective optimization
of either speed or stability did not yield individuals with a
trade-off between the two objective functions. The results
show that multi-objective evolutionary optimization on the
physical robot is not only feasible, but preferable over
using single-objective optimization, given a high level gait
controller.

1 Introduction and related work
The field of evolutionary robotics (ER) uses evolutionary
computation to automatically optimize robot controllers and
morphologies [1]. This process involves iteratively generating
new candidate solutions and evaluating them in simulation or on
the physical robot. ER methods have been used both as a design
tool and for making continuous adaptions to changing situations
or environments.

Many of the techniques used in traditional robotics for design of
walking gaits or robot morphologies require a team of experienced
engineers and excessive resources and time for trial and error.
Automatic parameter tuning can help reduce the number of
iterations, and use of evolutionary aided design can give an
engineer new ways to analyze the problem and give suggestions
for new design features [2]. Use of evolutionary algorithms in
robotics can serve as a tool to save time during development,
but examples have also been seen where evolved solutions
outperformed hand designed solutions [3].

Changes in the robot [4] or its environment [5] can greatly
alter the quality of a given controller or morphology. Walking on
asphalt and through soft sand will most likely demand different
walking gaits [6], and using techniques from evolutionary
robotics to quickly and efficiently evolve a new solution on

Figure 1: The robot used for the experiments.

the physical robot that better handles the new surface could
provide adaptability to a wide range of different environments and
situations. This will become even more important in the future
as robots are used for more advanced tasks and in more complex
environments.

Each evaluation on the physical robot requires a few seconds
[7], to several minutes [3] of evaluation time, and much of
the previous research involves simple, low level controllers that
require a large number of evaluations to yield good results [8,
9]. The long duration of the experiments is one of the main
reasons that make evolution on physical robots a difficult task,
in addition to high mechanical wear on the robots used and
excessive inaccuracies and measurement noise, when compared to
a typical simulation. Most of the previous research in evolution of
legged robot controllers on the physical robot is still fundamental
research with focus on the main theoretical principles, and proof
of concept experiments, rather than attempting to solve complex
real world problems. This has resulted in many mechanically
simple and fairly limited robots being used in current evolutionary
experiments [4, 7, 10], though we are starting to see more capable
robots emerging from the traditional robotics field [11, 12] which
might serve as evolutionary platforms for real world applications
in the future.

Each run of an algorithm may involve thousands of evaluations,
and tests on physical robots are therefore often difficult or
impossible, given the long duration of each evaluation. Simulation
is used extensively to enable more efficient experimentation, but
suffer from reality gap effects which in many cases make the
solutions found less optimal in the real world [13]. There are
techniques to lessen the difference between simulations and the
physical world, including use of added noise in parameters [13]
or simulated environment [14]. Research in combining the quick
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but inaccurate simulations with slow but accurate real world
evaluations has been performed [4, 10, 15], but no standardized
solution has been adopted into wide use.

Most of the previous work in evolution on physical robots
optimizes a single objective, due to the long duration of
evaluations. These single-objective (SO) evolutionary runs
produce reasonable gaits for simple robots, especially where the
possibility of tipping or falling is minimal. More advanced robots,
however, often require more than one objective to achieve feasible
gaits [16], though they require a substantially higher number of
evaluations than SO optimization [17]. Some experiments have
been done using multi-objective optimization (MO) in simulation,
with transferal to a real legged robot [18], but these suffer from
reality gap effects and the inability to be used continuously with
on-line improvement on the actual robot. Examples of combining
several objective functions into a single fitness function using
weighted sum fitness have also been used successfully [19]. This
does, however, only result in individuals with the chosen trade-
off between objective functions, and does not return a Pareto front
from which solutions with different trade-offs can be selected after
evolution.

Sharing of ideas and principles between research fields is
important to speed up innovation and generate interest and
motivation. For evolutionary robotics to be relevant to other fields,
more robust and general robots with the ability to serve as tools
by other researchers need to be developed. Our goal is to show
that Pareto-based multi-objective optimization of gaits on a four
legged robot produces more versatile and robust solutions than
running single-objective optimization, and that it is possible to
perform this on the physical robot, thereby avoiding reality gap
effects present in individuals evolved in simulation.

In this paper, we use a four legged robot with relatively
powerful servos and a high level control system that uses
inverse kinematics from classical robotics. We run multi-
objective NSGA-II optimization of gaits with speed and stability
as objective functions, to achieve a robust gait with a range of
different speeds and stabilities for various applications. Single-
objective runs optimizing each objective individually are also
performed to demonstrate the differences between results from the
multi-objective and single-objective cases. We also select the top
performing gaits from each SO run, and a selection of gaits from
the Pareto front resulting from the MO optimization, and compare
and verify the performance by re-running the individual gaits.

We have not seen any previous work doing multi-objective
optimization on a physical four legged robot resulting in a
Pareto front with stable and robust gaits. Our use of a high
level controller limits the number of invalid solutions, while still
allowing the freedom for a range of different gaits.

The implementation is shown in section 2, describing the robot,
control system, evolutionary system, and physical test setup.
Section 3 describes the experiments performed and the observed
results, followed by discussion in section 4 and conclusion and
avenues for future work in section 5.

2 Robot and evolutionary setup

2.1 Robot
All experiments were performed using a custom robotic platform
currently under development at the University of Oslo, which
can be seen in Fig. 1. The top frame is made of aluminum,
and measures 420mm * 220mm, with a plywood center. The
four legs are about 45cm long, connected by aluminum brackets

FL
FR
BR
BL

Figure 2: The gait sequence of the robot. Solid lines mark
ground contact, and leg positions are given according to
front (F), back (B), left (L) and right (R).
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Figure 3: The resulting spline with step_length 150,
step_height 35, and three different step_smoothing parame-
ters. A reference rectangle with the chosen step_height and
step_length is shown for comparison.

with a 3D printed ABS upper tibia, and are placed in a mammal
configuration. They each feature three Dynamixel MX-64 servos,
with onboard PID controllers receiving the commanded angles
over USB. An Xsens MTI-30 attitude and heading reference
system (AHRS) is mounted in the middle of the body to measure
linear acceleration, rotational velocity and magnetic fields, giving
data on absolute orientation. Reflective markers are mounted on
the top plate to allow for using motion capture equipment to record
the position and orientation of the robot. The complete robot
weights about 4.5kg, and operates tethered during all experiments.

2.2 Control system
A continuous, regular crawl gait [20] was chosen for its capacity
of constant forward speed. The gait sequence can be seen in
Fig. 2. The body moves steadily during the gait sequence, and
each leg lifts and moves to the front incrementally to maximize
ground contact time and stability. Constant movement can be
advantageous when collecting sensor data of the environment,
or using one of many mapping algorithms [21]. The path for
each individual leg end is defined by a spline, and the centripetal
catmull rom spline [22] was chosen for its interpolating nature and
relative resistance to self-intersection.

The gait generator use parameter ranges defined in Table 1 and
generates a number of control points for the spline, resulting in
a continuous gait path for each leg. Three parameters are used
for manipulating the control points. The parameter step_length
controls the length of the ground contact line, while step_height
determines the height of the step. The step_smoothing parameter
regulates the angle of movement in the point where the leg
end hits the ground, by stretching out the front of the spline.
This was added to allow for a reduction of the impact forces
from each step, by making contact with the ground in a more

2

56



Category Name Values

Spline shape step_length [0, 150mm]
step_height [0, 50mm]
step_smoothing [0, 50mm]

Gait timing gait_frequency [0, 1.5hz]

Balancing wag_phase [−0.2, 0.2]
wag_amplitude_x [0, 50mm]
wag_amplitude_y [0, 50mm]

Table 1: Parameters for the gait generation.

Algorithm NSGA-II
Evaluation time Maximum 50s
Parameters Real: [0, 1]
Recombination None

Mutation
Type: Gaussian
Probability: 1.0
Sigma: 1/6

Table 2: Parameters for the evolutionary setup

horizontal direction. Examples of a typical spline with different
step_smoothing parameters can be seen in Fig. 3.

To increase the stability of the gait, a wag was added where the
robot at all times leans to the opposite side of the currently lifted
leg. This ensures a higher margin of stability and is required for
a statically stable gait, due to the relatively high mass of the legs
compared to the body. This wag movement has a phase offset to
correct for differing control delays between the walking motion
and the wag, and feature different amplitudes for lengthwise and
sidewise movement. The gait has a gait_frequency parameter that,
together with the step_length, forms the speed of the robot.

The control system is implemented in C++ using the software
framework Robot Operating System (ROS) [23]. The leg end
positions from the gait controller are sent through an inverse
kinematics function to obtain the angles necessary to achieve the
specified pose. The different functions of the robot controller
are implemented as individual ROS nodes, and runs on a laptop
connected to the servos and AHRS by cable.

2.3 Evolutionary setup
The software running the evolutionary algorithm uses Sferes2
[24], a C++ framework for evolutionary experiments. The
NSGA-II algorithm was chosen for both SO and MO runs to
ease comparison of results from the different runs. When it
optimizes a single-objective, it reduces to a binary tournament-
based evolutionary algorithm with truncating survivor selection.

Real values with a range from 0 to 1 were chosen to represent
the genotype. These are then scaled to the values in table 1 when
testing a candidate. Gaussian mutation is used on all genes with a
sigma of 1/6, while no recombination is used, as seen in table 2.

Two objective functions are used in the experiments in this
paper, speed and stability. The speed is calculated by using the
duration of the gait and the Euclidean distance between the start
and end position captured by the motion capture equipment, as
seen in equation 1. An objective function for stability using
only the gyro within the AHRS has been used in similar cases,
but we observed in initial tests that gaits that were qualitatively
perceived as very unstable received high gyro-based stability
scores. A new objective function using both the orientation and
measured linear acceleration from the AHRS sampled at 100hz
was used instead, and provided a much closer match between
perceived qualitative stability and measured quantitative stability

fitness. The full stability objective function, seen in equation 4,
is a sum of the linear acceleration function and the orientation
function, seen in equations 2 and 3, where acc is a single sample
from the accelerometer, i is the sample index, and j is the axis
of the sample. Roll and pitch are orientation angles obtained
directly from the AHRS. The scalingFactor was chosen to provide
a balance between the two functions by having acceleration and
orientation affect the fitness value equally, and was in these
experiments set to 50. The stability objective function is negated
to allow for maximization of both objective functions.

f itnessspeed =
dist(positionstart , positionend)

timeend − timestart
(1)

Fj =

√√√√ 1
N

N

∑
i=1

(acci, j −acc j)2 (2)

G =

√√√√ 1
N

N

∑
i=1

roll2
i +

√√√√ 1
N

N

∑
i=1

pitch2
i (3)

f itnessstability =−
(

Fx +Fy +Fz

scaling_ f actor
+G

)
(4)

2.4 Physical test setup
The goal of the physical test setup is to maximize the quality
of measurements, while minimizing down time and requirements
for human intervention. Motion capture equipment is used to
provide a precise and accurate reading of position for estimation
of speed. The time for each measurement is chosen to provide
a good balance between many inaccurate measurements, and few
but accurate evaluations, given a set time budget. Each evaluation
is obtained by walking one meter forward, and then using the same
gait back to the start position, before averaging the fitness values
achieved for both directions. Walking in each of the two directions
is restricted by a timeout of 10 seconds, to limit the time spent on
evaluating slower individuals.

Both the robot and control system are designed to ensure
repeatability for gaits by keeping the distance moved between
each evaluation minimal. This is achieved by having the robot
sequentially lift and reposition the legs to the start pose of the new
gait after each evaluation. Two walking sequences of 10 seconds,
in addition to repositioning of legs before and after the gait, results
in a maximum of 50 seconds used for each evaluation. Some
human intervention is required when the drift between evaluations
has become too large, however, to move the robot back to the
center of the test area. This has been observed to be once every
three to ten minutes, depending on the objective and stage of
evolution. If the robot falls or finishes evaluation without the body
being parallel to the floor, the program pauses and waits for human
intervention before continuing, typically happening about every
30 minutes.

3 Experiments and Results
3.1 Experiments
Evolutionary runs were performed with three different configura-
tions: an SO run optimizing speed, an SO run optimizing stability,
and an MO run optimizing both speed and stability. Parameters for
the different runs are given in table 3. To make a direct comparison
between results of the Pareto front and the results from the single-
objective runs possible, one of each single-objective run was
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Objectives Population Generations Max time per run
Speed 8 16 1h 47m

Stability 8 16 1h 47m
Speed, Stability 32 8 3h 34m

Table 3: Parameters for the different evolutionary runs.

compared to the multi-objective run. This ensures comparisons
of results from the same number of evaluations, since the MO run
has twice the number of evaluations as an SO run.

A number of well performing individuals from the final
population of the evolutionary runs are selected for re-evaluation
and detailed analysis. This is important both to confirm the
validity of the measured fitness, and to generate additional
information on the performance of each individual for analysis
and graphing.

3.2 Results
This section first shows the results of the two different SO runs,
before presenting the results from the MO run. The results of the
multiple re-evaluations of the top performers are presented last.

The SO optimization of speed resulted in the fitnesses seen in
Fig. 4. The figure shows a relatively high initial speed in the
randomized initial population, and we see a steady rise in speed
through all generations. Stability decreases in the majority of
the run, but has a slight increase in the last individual found.
Fig. 5 shows an initial maximization of step_length, and a
gait_frequency at approximately the middle of the allowed values.
The gait_frequency rises steadily through the generations, and we
see a slight decrease in step_length towards the end.
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Figure 4: Fitness results from speed optimization.
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Figure 5: Parameters in the SO optimization of speed.
The changing population is seen, as well as the evaluated
parameters between each generation.

The fitness from the SO optimization of stability can be seen
in Fig. 6. This figure shows convergence after only 4 generations,
though with a slight increase in fitness in the last three generations.

Fig. 7 shows which parameters are tested throughout the run, and
we can see that step_length is centered around 20% throughout
the run, while the gait_frequency is quickly minimized.
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Figure 6: Fitness results from stability optimization.
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Figure 7: Parameters in the SO optimization of stability.
The changing population is seen, as well as the evaluated
parameters between each generation.

Fig. 8 show the results from the MO run optimizing both
speed and stability. The Pareto optimal solutions follow a slightly
curved shape with three large holes in the front, with a few barely
dominated solutions shortening in a couple of the gaps. We can
also see the results from both of the SO runs in the same figure.
We see that both runs outperform the solutions found in the Pareto
front by a relatively small amount, but are concentrated along
the two extremes, yielding no viable solutions with any trade-off
between the different objectives.
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Figure 8: Pareto front from the MO run, along with
individuals from the SO runs of speed and stability.

Fig. 9 shows the re-evaluated solutions from the evolutionary
experiments, where the fitness from the selected individuals are
verified by running each of the gaits an additional 10 times. The
top performing individual from each SO run was tested, as well
as one individual from each extreme, and one individual from the
middle of the Pareto front. We see that the measurement noise

4

58



SO speed SO stability MO fast MO stable MO balanced
-0.4

-0.3

-0.2

-0.1

0
S

ta
b

ili
ty

(a) Box plot of stability from re-evaluations.

SO speed SO stability MO fast MO stable MO balanced
0

5

10

S
p

e
e

d
 (

m
/m

in
)

(b) Box plot of speed from re-evaluations.

Figure 9: Box plot showing the 10 new fitness measure-
ments on each of the selected individuals, with original
fitness values from the evolutionary run in green.

is fairly low for both objective functions, though slightly higher
for speed. We also see no large discrepancies between the original
fitness measurements during the evolutionary run in green, and the
distribution of measured fitnesses from the re-evaluations.

Fig. 10 shows one of the resulting gait splines from a selection
of individuals from the runs, in addition to raw measurements of
the two fitnesses, here given by distance covered and stability. We
see from the figure that the individuals from the extremes of the
Pareto front resemble the individuals found in the SO runs, and
that the individual with a trade-off between stability and speed
more closely resembles the high stability individuals on the shape
of the spline and the stability achieved, while the distance covered
appear more similar to the speed optimized individuals.

4 Discussion
We made the following observations from the results:

• The SO optimization runs slightly outperformed the
extremes of the Pareto front from the MO run, as seen in
Fig. 8, but none of the results from any of the SO runs
are directly useable in most applications. A high speed is
achieved using SO optimization, as seen in Fig. 4, but it will
easily tip over, and the performance will most likely suffer
with a slightly different weight distribution on the robot or a
different ground friction, as the stability objective function
is low. Fig. 6 shows a high stability from the SO stability
optimization, but the speed is so low that the applications
are very limited. The MO run produces slightly worse
performing individuals than the two SO runs in the extremes
of the front, but provides a range of choices with different

trade-offs between stability and speed throughout the front.
More runs or a larger population would most likely make
the gaps smaller. This shows that SO optimization of
either stability or speed is ineffective, while MO evolution
produced a range of suitable gaits with different trade-offs
between speed and stability, with a much higher relevance
to real world problems.

• The use of a high level control system severely reduces the
number of infeasible gaits tested on the robot, although it
also limits the diversity of different types of gaits. Many
lower level controllers have been successfully used in both
simulation and single-objective evolution on a physical
robot, but require a high number of evaluations that makes
it infeasible to do multi-objective evolutionary optimization
on real robots alone. We see from the fitness graphs in
Fig. 10 that several of the randomized solutions in the
initial populations do relatively well, and that as few as
32 evaluations are enough to achieve a stable gait in its
corresponding single-objective experiment. This shows that
the control system used is a good choice when facing time
consuming evaluations like we do when evolving on the
physical robot, and the highest achieved crawl gait speed of
about 23cm/s is considered very good for the small number
of evaluations used.

• We can see from Fig. 10 that the most stable solution
with stability in Fig. 10f also has one of the least constant
speeds, seen in the distance walked in Fig. 10e. This might
seem counter intuitive given that stability is dependent on
low variation in linear acceleration, but this shows that
a varying speed of the body is needed to achieve high
stability by counteracting the relatively large mass of the
legs. We also see that the individual featuring a trade-off
between stability and speed has a spline that resembles the
individuals from the high stability runs. This indicates that
the major difference between the slow and stable individual,
and the fast and stable individual is mainly found in timing
and balancing, and not in the shape of the spline.

• Fig. 9 shows a relatively low variation in fitness
measurements over the 10 re-evaluations of each individual.
We also see that the original fitness measurements taken
during the evolution correspond to the re-evaluated
fitnesses tested a few days later. This shows a high degree
of repeatability in the test setup, which requires low
measurement noise, predictable gait generation, and precise
control of the robot. High variation would give many of the
same challenges seen when experiencing reality gap effects,
but this has shown not to be the case with this robot and
experimental setup.

• Optimizing lower level control systems by hand can be a
challenging task. The parameters are often not connected
directly to the physical robot, and it can be hard or
impossible for an engineer to predict how changing certain
parameters would affect the end result. All parameters of
the high level control system we use, shown in table 1,
are easy to visualize and understand. Not only does this
make it easier for an engineer to design gaits using this
controller, but it makes directly comparing hand designed
gaits by an engineer to evolved or otherwise automatically
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Figure 10: First column is the gait spline of the individual, second column is the distance from the starting position, and the
third column is the stability of the gait. Subfigure (a) to (c) is the fastest individual from the SO optimization of speed, (d)
to (f) is the most stable from the SO optimization of stability. The rest of the subfigures are individuals from the MO run
optimizing both speed and stability, with (g) to (i) being the fastest individual, (j) to (l) being the most stable, and (m) to (p)
being a trade-off between the two from the center of the Pareto front.
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optimized gaits less ambiguous. Using evolution on a more
intuitive controller also promotes more efficient use of the
evolutionary results when doing evolutionary aided design,
with easier analysis and better human understanding of the
resulting parameters.

5 Conclusion and future work
In this paper we have investigated using both single and multi-
objective evolutionary optimization on the physical robot to
generate parameters for the high level controller producing a
continuous, regular wave gait for a four legged robot. A physical
test setup is used which provides robust fitness measurements
with low noise and high repeatability between evaluations of the
same gait parameters. We saw that the high level controller made
it possible to achieve high performing individuals after a small
number of evaluations, which makes multi-objective optimization
a feasible method for gait generation on the physical robot.
Evolved individuals from the SO runs performed well in regards
to their goal, but lack a robust gait with real world applicability.
Gaits from the MO run feature a range of different trade-offs
between stability and speed, and therefore higher relevance to a
range of applications.

It would be interesting to test some of the solutions with
low stability and evaluate performance on surfaces with different
friction, inclinations, and obstacles to see how well the stability
measurement corresponds to robustness. Continuing the work
on the high level controller to allow for a more diverse set
of gaits, while still not generating a high degree of infeasible
individuals, could yield solutions with an even lower number of
required evaluations. Using SO optimization of a weighted sum
fitness function of a combination of speed and stability might, in
combination with other techniques for preserving diversity, yield
similar results to multi-objective methods. The use of an archive
scheme, previously used for instance to allow a robot to walk in
all directions [25], might enable a single-objective algorithm to
present a range of alternative solutions, comparable to the Pareto
front of the MO run. Moving away from using motion capture
and instead using the AHRS to measure the speed would decrease
the complexity of the system and enable more labs to use the
system. Working on reducing the evaluation time by accepting
more noise in the fitness values would enable more and larger
evolutionary experiments on the current controller, or enable more
complex controllers to be used. Furthermore, adding the ability
to do simulations on the system and incorporating that to reduce
the number of unneeded evaluations on the physical robot might
further reduce the need for lengthy hardware trials, though many
challenges will arise from the reality gap effects.
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Abstract – If robots are to become ubiquitous, they will
need to be able to adapt to complex and dynamic environ-
ments. Robots that can adapt their bodies while deployed
might be flexible and robust enough to meet this challenge.
Previous work on dynamic robot morphology has focused
on simulation, combining simple modules, or switching be-
tween locomotion modes. Here, we present an alternative
approach: a self-reconfigurable morphology that allows a
single four-legged robot to actively adapt the length of its
legs to different environments. We report the design of our
robot, as well as the results of a study that verifies the perfor-
mance impact of self-reconfiguration. This study compares
three different control and morphology pairs under different
levels of servo supply voltage in the lab. We also performed
preliminary tests in different uncontrolled outdoor environ-
ments to see if changes to the external environment supports
our findings in the lab. Our results show better performance
with an adaptable body, lending evidence to the value of self-
reconfiguration for quadruped robots.

1 INTRODUCTION
Robots are increasingly asked to operate in more dynamic and
unpredictable environments, alongside other robots, or humans.
The challenges of these environments can be handled through
complex locomotion control or mechanical compliance [1], or
by giving a robot the ability to adapt and learn. So far, robotic
adaptation has focussed on a robot’s control system, but adapting
the body of a robot–its morphology–can provide a more funda-
mental flexibility [2]. The concept of embodied cognition sug-
gests that the interaction of the mind, body, and environment
can all contribute to the task solving ability of the robotic sys-
tem [3]. Earlier work in evolutionary robotics has also shown
that different morphologies emerge for environments of varying
complexity [4]. Thus, a robot should adapt its body as well as its
control system, to the environment and the task at hand.

In this paper, we introduce a practical four-legged robot in-
cluding self-reconfigurable legs (Fig. 1). Each leg features three
rotational joints that are used for locomotion, and two prismatic
joints. While the prismatic joints are too slow to use in locomo-
tion, they can actively alter the morphology of the robot during
operation. This ability might be applied to adapt to a dynamic
environment; alternatively, the body can be changed during tra-
ditional single-morphology experiments to validate solutions on
different robot bodies.

With this robot, we wish to investigate whether adapting mor-
phology can lead to an advantage in tackling dynamic situations
or environments. This research goal can be summarised as the
following hypothesis: No single robot morphology performs best
for all situations, tasks or environments. That is, robots with dy-

Figure 1: The robot during outdoor experiments. The legs
can automatically change length, enabling experiments in
self-reconfiguration.

namic morphology will be able to perform better than static mor-
phologies, by modifying their own body in the face of changing
situations.

In this paper, we present evidence supporting this hypothe-
sis for our robot. In the lab, we examined how different mor-
phologies with hand-tuned gaits perform when the torque of the
servos is changed. This is done by constraining the robot’s sup-
ply voltage, which emulates in-the-field depletion of a robot’s
battery. We also describe preliminary tests of the robot under
battery power in two field environments to explore our results
in more difficult environmental conditions. Our lab experiments
support our hypothesis, and the field tests support our findings
in the lab.

Contribution: There are two significant contributions in this
paper. First, we demonstrate and introduce a practical robot
system for researching self-modifying morphology. This sys-
tem has been released as a fully certified open source hard-
ware project, and can be used freely by other researchers. Sec-
ondly, we show through experimental results–both from the lab,
and from field scenarios–that having a self-reconfigurable mor-
phology helps our robot to maintain optimal performance when
adapting to changing supply voltages and external environments.
These experiments indicate that self-reconfigurable legs could
improve the performance of robots doing complex tasks in dy-
namic environments.
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2 Background
Being able to use different modes of locomotion will allow a
robot to adapt to the most appropriate way of travel in dynamic
and unknown environments. Some robots are able to change
their locomotion mode without morphological change [5], while
others change it by switching between separate structures, such
as wheels and flight rotors [6]. Structures can also be shared by
reusing parts of the body for different modes [7], which saves
weight at the expense of mechanical and control complexity. In
general, these robots have discrete morphologies used for each
mode of locomotion, precluding adaptation from a continuous
range of different morphologies in response to internal or exter-
nal factors. Other robots can change parts of their bodies through
adjustable compliance mechanisms [8], but these typically re-
sults in a much smaller impact on locomotion capability.

Modular self-reconfigurable robot systems, including com-
plex simulations and physical implementations, can be divided
into three architectures [9]. The simplest architecture is the chain
or tree architecture, with a serial connection between modules.
Zykov et al. [10] review many examples of systems that use this
simple architecture, but still manage to show reasonably com-
plex configurations. The lattice architecture has modules con-
nected in parallel along a two or three-dimensional grid. This
allows for more advanced base architectures, and connecting
sub-parts of the system into meta-modules can yield interest-
ing possibilities when changing the morphology of the system
[11]. Other modular robots follow a mobile architecture, and
can take on either of the previous architectures, or work as sepa-
rate units. This is closely related to the field of swarm robotics;
physically connecting a swarm of robots to form new, coopera-
tive morphologies can yield very flexible solutions [12]. Despite
these advances, modular robots still have a very coarse granu-
larity when it comes to its morphology, when compared to other
areas that change a robot’s body.

The field of evolutionary robotics uses techniques from
evolutionary computation to optimize control and–less often–
morphology. Evolution of both control and morphology together
is usually performed in simulation and presents additional chal-
lenges due to the complex search-space [13]. The difference
between performance in a simulator and a real-world counter-
part is referred to as the reality gap, and often makes it very
challenging to transfer a result to the real world. A lot of inter-
esting research has been done in simulation alone, but there are
many reasons to move more of the research into hardware, as
described in one of three grand challenges to the ER field posed
by Eiben [14]. There are some examples of evolution of mor-
phology in hardware, but these require either excessive human
intervention [15], or use slow external reconfiguration of modu-
lar systems [16]. There are also examples of self-reconfiguring
morphology used exclusively to guide the search for a better
controller of a single hand-designed optimal morphology [17].
In our previous work, we have demonstrated in that earlier ver-
sions of the DyRET platform, presented in this paper, can be
used for evolutionary experiments to optimize morphology us-
ing mechanical self-reconfiguration [18]. Our work was the first
example of such an approach as far as we are aware.

3 System overview
Our robot was developed to be a platform for experiments
on self-adaptive morphologies and embodied cognition, and is
shown in Fig. 2. It is a certified open source hardware project,

470mm270mm

Figure 2: Top and side view of the robot, with measure-
ments. The height of the robot is dependent on pose and
leg length, and is typically between 600mm and 700mm
in normal operation.

and documentation, code and design files are freely available on-
line [19]. It can actively reconfigure its morphology by chang-
ing the lengths of the two lower links of its legs, the femur and
tibia. The difference in height is illustrated in Fig. 3. Since it is
used with machine learning techniques, the robot must withstand
falls and unstable gaits, making maintainability and robustness
important design factors.

Changing the length of the legs moves the center of gravity
in the robot, affecting the balance. Longer legs also mean lower
servo rotational velocity for a given end-effector path, at the ex-
pense of higher torque requirements. The length of the legs can
therefore be used to mechanically gear the motors, and allow the
robot to change where it sits in the trade-off between movement
speed and force surplus continuously and autonomously.

3.1 Mechanics
The robot applies a mammal-inspired quadruped configuration.
All parts can either be bought as relatively inexpensive commer-
cial off-the-shelf components, or be printed on consumer-grade
3D printers. The parts for the robot without sensors are esti-
mated to be about 6500USD in 2018, including 4300USD for
the 12 servos alone. Some parts can optionally be made in alu-
minium for improved robustness, which is relevant if the robot is
used for gait learning experiments. The main body of the robot
is constructed with carbon fiber tubing of different diameters,
which ensures a stable but low weight base for the four legs.
The complete robot weighs 5.5kg, and operates tethered during
all experiments.

The robot has four legs with five degrees of freedom each.
The coxa (hip), femur (top leg), and tibia (lower leg) are all
connected to revolute joints like traditional mammal robots, in
addition to two prismatic joints to allow self-modification of
the leg lengths. Each leg includes three Dynamixel MX-64AT
servos, with integrated PID controllers that receive angle com-
mands over USB. Off-the-shelf aluminium brackets are used to
connect the servos to the rest of the robot where possible, with
remaining connections using custom 3D printed and machined
aluminium parts.

The two lower links of each leg, femur and tibia, can be re-
configured to different lengths. The reconfiguration mechanics
is shown in Fig. 4. These linear actuators consist of small highly
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Figure 3: Diagram of the legs in their rest pose, showing
the two lengths used in the paper. The shortest available
length is to the left, and 80% of available length to the
right, as used in our experiments. See Fig. 4 for details on
the reconfiguration mechanism in the red square.

geared DC motors connected to lead screws through roller chain.
The leg is connected to the lead screw with a self-lubricating
plastic nut, and rides on aluminium rails by two carriages. The
length of the leg is sensed by the encoder, which is calibrated
on power-up using the mechanical end-stop. Leg cabling has
been run through cable carriers that keep the cable runs constant
regardless of leg length, along with cable lacing techniques to
secure the cables with minimal strain. The low linear actuation
speed (≈1mm/s) makes it ineffective to use this mechanism ac-
tively during the gait, so it is exclusively used for changing the
morphology configuration.

3.2 Electronics
All twelve servos are connected to an external computer running
the software through a USB serial adapter. Angular positions of
all servos are reported to the system at approximately 60Hz, and
new angle commands are received at the same rate. Temperature,
current and load are also read, to ensure the servos stay within
operating specifications. Servo position control is achieved us-
ing integrated PID-control in each servo.

The length of the reconfigurable legs are controlled using an
Arduino Mega 2560 Rev 3 board with a custom PCB shield,
which communicates with the software system through USB at
10hz. Limit switches are routed directly to the digital inputs of
the microcontroller with internal pull-ups, and all encoders are
connected directly to the analog inputs. The custom shield has
twelve H-bridges to drive the DC motors in the linear actuators,
which are controlled by PWM from the microcontroller. Since
we are using a screw mechanism for the linear actuators with in-
herently high holding load and friction, a proportional controller
for each prismatic joint is sufficient to achieve stable actuation
with 0.5mm accuracy.

Figure 4: The reconfiguration mechanism, with the rest of
the leg extending to the right of the image. (1) Brushed
DC motor and sprocket, (2) Encoder for positioning,
(3) Aluminium rail and carriages, (4) Threaded rod and
sprocket, (5) Limit switch for zeroing, (6) Nut fixed to the
movable part of the leg

An Xsens MTI-30 attitude and heading reference system
(AHRS) is mounted close in the middle of the body to measure
linear acceleration, rotational velocity and magnetic fields, giv-
ing data on absolute orientation at 100Hz. Reflective markers
are mounted on the main body of the robot to allow motion cap-
ture equipment to record the position and orientation of the robot
at 100Hz. The robot can carry enough weight to accommodate
a full sensor package, such as a LIDAR and a depth camera, as
well as an on-board Intel NUC computer.

3.3 Software
All software functions are implemented as separate Robot Oper-
ating System [20] nodes in C++, and an overview of the system
with its main nodes is shown in Fig 5. An experiment manager
node takes input from the user, and runs the different experi-
ments. Trajectories with distance to move, direction, and con-
figuration are sent to a trajectory controller that interfaces to the
gait controller. Several different gait controllers can be used, as
switching out nodes are simple plug-and-play procedures that
can be done during system operation. The gait controller either
sends commands to the hardware in the real world, or to the
Gazebo simulator [21]. Feedback on performance is received by
the gait evaluator from either simulations or the real world, and
is analyzed, logged, and reported back to the experiment man-
ager node.

3.4 Control
We have successfully implemented and used both high-level and
low-level gait control. Only the high-level control is used for
experiments with self-reconfiguration, as the gaits produced are
more robust and easier to change for an engineer than low-level
gaits. Low-level control is detailed in [22], and not used for the
experiments in this paper.

The high-level control is an inverse-kinematics based position
controller for the legs of the robot, making it easy for an engineer
to hand design a gait, as well as to intuitively understand gaits
that have been optimized by machine learning algorithms. It
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Figure 5: Overview of the software system. Each named
black square is a node, and the system can either be con-
nected to the Gazebo simulator, or to the physical robot
and sensors in the real world.

generates a continuous, regular crawl gait, and the body moves
at a constant forward speed during the gait sequence, lifting each
leg separately to maximize stability. The gait controller uses
8 parameters to generate points along an interpolating looping
cubic hermite spline, seen in table 1. Ground height is given
in millimetres (Hground), and is dependent on the femur length
(Lfemur) and tibia length (Ltibia), following this equation:

Hground =−430− ((Lfemur +Ltibia)∗0.8); (1)

The 5 control points (x,y,z) for the spline are derived from
step length (Lstep), step height (Hstep), step smoothing (S), and
ground height (Hground):

(0,
Lstep

2
,Hground)

(0,
−Lstep

2
,Hground)

(0,
−Lstep

2
,Hground +

Hstep

1.5
)

(0,0,Hground +Hstep)

(0,
Lstep

2
+S,Hground +

Hstep

4
)

(2)

A balancing wag movement (W ) is added to allow the robot to
lean to the opposite side of the leg it is currently lifting to allow
for statically stable gaits. This is added to the position from the
spline at each time step (t). Period (T ) is calculated from the gait
frequency parameter ( f ), while phase offset (Wφ ) and amplitudes
(WAx and WAy) comes directly from the gait parameters. An
offset of 0.43 is added to offset forward and sideways movement.

Wx =
Ax
2

∗ tanh(3∗ sin(
2π ∗ (t +(Wφ ∗T ))

T
))

Wy =
Ay

2
∗ tanh(3∗ sin(

2π ∗ (t +(Wφ +0.43)∗ T
2 )

T
2

))

(3)

We have also added a parameter for a lift duration (Dlift) to
control what percentage of the gait period is used to lift the leg
back to the front.

4 Experiments and results
We tested DyRET to find whether changing morphology really
can deliver an advantage in different environments. We designed
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Figure 6: The leg path and control points for the gaits used
in our experiments.

experiments in different environments that we speculated would
require different leg lengths. In these limited number of envi-
ronments, our hypothesis can be falsified if one morphology is
the best performer in all situations. There are many measures
of performance that could be used, but we chose to only look
at forward speed, as it is both simple to measure and under-
stand. By studying how different morphologies impact perfor-
mance, we can gain an indication of whether mechanical self-
reconfiguration could be useful in real-world dynamic environ-
ments.

Our experimental procedure was as follows. First, we hand
designed the gaits to be used in the experiments by choosing
conservative gait parameters. The main experiment is done in the
lab to investigate how reducing the supply voltage, and thereby
the torque of the motors, affects the performance of two different
morphologies. The lab environment gives us stable evaluations,
and the results should be directly transferable to real-world ap-
plications where the servos run on unregulated battery power.
Then, to evaluate the plausibility of the lab experiments, we per-
form preliminary evaluation of the gaits in two different field
environments: an indoor garage facility, and an outdoor footpath
in winter conditions.

We used two morphology configurations for the experiments:
one that uses the shortest available leg length (referred to as
”short robot”), and one that uses 80% of the available length
(referred to as ”tall robot”). The maximum length of the legs
was designed with optimal lab conditions in mind, so we use
only 80% of the available length of both links as to not strain the
robot in the more demanding environments.

We hand designed parameters for a conservative gait (referred
to as ”base gait”) based on experience from previous experi-
ments [18, 23]. The walking speed of the robot is limited by
the maximum rotational speed of the servos. This speed is a
function of torque, but we have selected a maximum allowable
rotational speed of 25RPM in our current setup, based on specifi-
cations and experience. Since the legs of the tall robot are longer,
the same leg endpoint movement requires a smaller rotational
change. This means that the taller robot can walk faster than the
shorter robot, given the same rotational speed limit. We there-
fore included a faster gait (referred to as ”the extended gait”) that
could only be used on the taller robot without exceeding servo
specifications. This gait has both increased frequency and step
length, while all other gait parameters are kept the same, as seen
in Table 1. The spline path for each gait can be seen in Fig. 6.
The base gait is evaluated on both morphologies, while the ex-
tended gait is only valid for the tall robot.
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Table 1: Hand designed gait parameters
Parameter Symbol Base gait Extended gait
Step length Lstep 185mm 215mm
Step height Hstep 75mm 75mm
Smoothing S 50mm 50mm
Frequency f 0.275hz 0.35hz
Lift duration Dlift 20% 20%
Wag phase Wφ 0.0 0.0
Wag amplitude x WAx 15mm 15mm
Wag amplitude y WAy 10mm 10mm
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Figure 7: Results of the lab evaluations of the three dif-
ferent gait and morphology pairs at the different supply
voltages.

4.1 Lab experiments
In the lab experiments, we change the supply voltage of the ser-
vos to investigate whether different leg lengths are needed when
the torque available to the robot changes. Each gait and mor-
phology pair was evaluated ten times with two different supply
voltages by the robot walking 1.5m forwards and then 1.5m in
reverse. This takes up to about 60s, depending on the gait speed.
Pair-wise Mann-Whitney U tests with Holm correction were per-
formed to assess statistical significance of differences.

The results are shown in Fig. 7, and with more details in table
2. Using the base gait at the higher voltage, we see that the short
and tall morphology perform similarly at just over 3m/min. The
tall robot with extended gait (Mdn = 5.26) perform significantly
better than both the short robot (Mdn = 3.26, U = 0, p < 0.001),
and the tall robot with the base gait (Mdn = 3.16, U = 0, p <
0.001).

At the lower voltage, we see that the short robot has a slight
decrease in performance to just under 3m/min, while the tall
robot with the base gait is now unable to match that speed, with
a reduction to below 2m/min. The short robot (Mdn = 2.90)
now outperforms the tall robot with both base gait (Mdn = 1.90,
U = 0, p < 0.001) and extended gait (Mdn = 2.35, U = 0, p
< 0.001).

For the lab experiments, we see that at the high voltage, the
tall morphology performs best, with its extended gait. At the
lower voltage, the short morphology performs best.

4.2 Field experiments
The field experiments in the garage and on the footpath, involved
changes in the external environment, including surface friction,
texture, temperature and humidity, to see if this affects the per-
formance of different morphologies. In both field environments,
the robot was powered by an external three-cell LiPo battery
pack (11.1V) and controlled from a tethered laptop. The garage
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Figure 8: Results from the field experiments. Note that
each garage evaluation has two data points, while the out-
door evaluations have three.

Table 2: Experiment results details
Experiment Evals Morphology Gait Range Mean

Lab, 15V
10 Short Base [3.161, 3.319] 3.252
10 Tall Base [2.936, 3.186] 3.135
10 Tall Extended [5.188, 5.388] 5.283

Lab, 10V
10 Short Base [2.784, 3.019] 2.902
10 Tall Base [1.759, 1.977] 1.884
10 Tall Extended [1.893, 2.647] 2.326

Garage
2 Short Base [0.892, 0.926] 0.909
2 Tall Base [0.838, 0.874] 0.856
2 Tall Extended [1.181, 1.278] 1.229

Outside
3 Short Base [0.561, 0.583] 0.572
3 Tall Base [0.486, 0,513] 0.495
3 Tall Extended [0.368, 0.444] 0.416

environment had a smooth concrete floor, with much lower fric-
tion than the lab’s carpet, and ambient temperature of around
+4◦C. The outdoor evaluations were held on a footpath in Nor-
wegian winter conditions (around −5◦C) where the surface was
a mix of compacted snow, ice, and gravel – a very challenging
environment to retain traction, shown in Fig. 1. Three combi-
nations of morphology and gait were evaluated by 120 seconds
of forward walking in each environment. Each evaluation was
replicated twice in the garage and three times on the outdoor
footpath. Speed was evaluated by using a hand-held laser dis-
tance measurer along with a time measurement from the test
program. The field experiments are only done as a preliminary
investigation to see if our lab experiments are feasible also for
external environment changes. We therefore have a limited num-
ber of evaluations, and are not able to do Mann-Whitney U tests
to analyze statistical significance.

The results from the field experiments are shown in Fig. 8,
with details in table 2. Results from the garage show a big re-
duction in performance from the lab; the base gaits achieve a
speed of about 0.9m/min, while the tall robot with the extended
gait achieves a speed of about 1.2m/min. Although there is a
reduction in speed when compared to lab conditions, we see the
same trend as with the high voltage experiment in the lab: both
morphologies perform similarly using the base gait, while the
tall morphology with the extended gait walks faster.

On the footpath, all speeds are further reduced; and we see
the same trend as observed with the lower voltage experiment in
the lab. The shorter robot now outperforms the tall robot with
both the extended gait, as well as base gait.

Our field experiments indicate that for the less demanding
garage environment, the tall morphology performs best with its
extended gait. In the more demanding outdoor environment, the
short morphology performs best.
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5 Discussion
The fact that the tall robot performed best at high supply voltage,
and the short robot performed best at lower supply voltage, sup-
ports our hypothesis in lab conditions. This also strengthens our
assumption that the self-adaptive legs can be used to adapt the
robot to the new supply voltage by selecting different trade-offs
between speed and torque.

In our preliminary indoor field experiments, we observed that
the tall robot with the extended gait outperformed the short
robot. In the more demanding outdoor environment, we saw
that the short robot now outperformed the tall robot with either
gait. This suggests that the trade-off between speed and torque in
the shorter robot suits this new and demanding environment bet-
ter than the taller morphology. The field experiments supports
our findings in the lab, and suggests further exploration could be
beneficial.

Our field experiments in Fig. 8 showed a reduced performance
for all individuals when compared to the same gaits in lab con-
ditions in Fig. 7. A different surface, temperature, control com-
puter, and running on battery are all factors that could have con-
tributed to this, and we observed slipping and stumbling of the
robot that we had not previously seen in the lab.

The fact that we are working on a physical robot system has
severely limited the number of samples we have used in our ex-
periments. It is challenging to do longer experiments in outdoor
environments, where there is a large number of variables that can
not be controlled compared with lab experiments. The observed
variance, however, was quite low, and statistical significance has
been assessed where possible to help support our conclusions.

We are only able to address the hypothesis for our own robot,
and the specific morphologies and environments in our exper-
iments. We believe the main reason for the observed differ-
ence in performance between voltages or environments comes
from the leg length gearing the motors and allowing different
speed/torque tradeoffs. This effect would act linearly, and we do
not expect to find new morphologies that outperform those we
used in all our selected environments. Our results are encourag-
ing, and suggest that other robots with self-reconfigurable hard-
ware might derive similar advantages from adapting their bodies
as we have.

6 Conclusion and future work
In this paper we introduced a novel four-legged mammal-
inspired robot with mechanical self-modifying morphology. We
hypothesise that no single robot morphology performs best
for all situations, tasks or environments. To address this for
our robot we ran lab experiments showing that different servo
torques require different morphologies to perform well. We also
performed preliminary field testing of the robot in two outdoor
environments, which supported the results of our lab experi-
ments. These results indicate that mechanically self-modifying
robots may perform better in dynamic environments by adapting
morphology as well as control to new conditions.

Even though we have shown clear indications that differ-
ent morphologies are optimal in different situations or environ-
ments, we have yet to investigate how to switch between these
or utilize a library of gaits and morphologies efficiently and au-
tonomously. Doing more extensive field experiments with more
evaluations and better tailored test setups would allow investi-
gating how to automatically and continuously adapt control and

morphology. We would also be able to investigate optimal mor-
phologies for different environments, and the close ties and in-
teractions between the environment and a robot’s control and
morphology. We evaluated the robot in two different outdoor
environments, one of which was very challenging for the robot.
It would be interesting to do more realistic experiments in a more
extensive collection of environments, and introduce dynamic el-
ements such as other robots or humans that might also affect the
efficiency of different morphology-controller pairs.

We also hope that these experiments inspire more research
on real world mechanical reconfiguration, and that our newly
developed and open sourced platform might help lower the initial
investment needed to begin such research by allowing others to
use or extend our robot design [19], either in simulation or the
real world.
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Abstract – For robots to handle the numerous factors that
can affect them in the real world, they must adapt to changes
and unexpected events. Evolutionary robotics tries to solve
some of these issues by automatically optimizing a robot for
a specific environment. Most of the research in this field,
however, uses simplified representations of the robotic system
in software simulations. The large gap between performance
in simulation and the real world makes it challenging to
transfer the resulting robots to the real world. In this
paper, we apply real world multi-objective evolutionary
optimization to optimize both control and morphology of a
four-legged mammal-inspired robot. We change the supply
voltage of the system, reducing the available torque and speed
of all joints, and study how this affects both the fitness, as well
as the morphology and control of the solutions. In addition
to demonstrating that this real-world evolutionary scheme
for morphology and control is indeed feasible with relatively
few evaluations, we show that evolution under the different
hardware limitations results in comparable performance for
low and moderate speeds, and that the search achieves this by
adapting both the control and the morphology of the robot.

1 Introduction
Evolutionary robotics (ER) uses techniques from evolutionary
compution to optimize robot control and morphology, and aims
to produce robots that are both robust and adaptive [1]. One of
the biggest challenges in ER, is making the leap from software
simulations to experiments evolving real physical robots [2].
Most ER research is done exclusively in simplified physics
simulators [3]. Projects that transfer evolutionary results to
physical robots often face discrepancies in performance between
the simulator and the real world, referred to as the reality gap.
Evolving in hardware on a real robot bypasses the problem of
the reality gap completely, and can even be used for on-line
adaptation of the system in its intended environment [4]. Many
researchers do not use ER with the intent of producing an optimal
robot controller or morphology, but to investigate evolutionary
processes. Real world evolution might, for this objective,
yield more realistic results since it exhibits the same noise and
unpredictability that other physical systems in nature present.
Evolving in hardware also lets us more closely investigate
the embodied cognition aspect of robotics, namely how the
interactions between mind, body, and environment affect how a
robot solves a task. One of the biggest challenges in evolving in
hardware today, is the long evaluation time required. This will
be reduced with quicker and more accurate evaluation methods,
and new production techniques allowing more systems to be
run cheaply and efficiently in parallel might offset much of the
difference between simulation and real world evaluation we see
today.

(a) Shortest possible legs (b) Longest possible legs

Figure 1: The robot used in this research features self-
modifying legs. The length of the two lower limbs of
all four legs can be set individually with sub-millimetre
accuracy.

In this paper, we investigate the extent to which control and
morphology can be adapted by a real-world evolutionary system
if the physical conditions of the system change. To achieve
this, we use a four-legged robot with high-level control and self-
reconfigurable morphology in the form of legs with motorised
length adjustment, shown in Figure 1. In our investigations,
we evolve the control and morphology of the robot at two
different supply voltages, and compare the resulting individuals.
Introducing a change in hardware conditions by turning down the
supply voltage reduces both the available speed and torque of
all joints by about 20%. A reduction in supply voltage would
happen naturally to robots with motors directly powered by a
depleting battery. Lower torque or speed can also be caused by
internal effects like the temperature of the DC motors or wear
and tear on the servo gears, or by external effects such as friction
or texture of the walking surfaces, or the weight of the robot’s
payload. We also evaluate individuals resulting from the optimal
voltage evolutionary run at the reduced voltage, to investigate
the reduction in performance and need for adaptation to this
limitation.

The results show that lowering the supply voltage of the robot–
when it was evolved for the optimal voltage–can significantly
impact the performance, with a reduction of 38% and 17% to
speed and stability respectively. However, under evolutionary
optimization at the reduced voltage, the robot is able to achieve
comparable performance at low and moderate speeds to the
optimal voltage individuals. We observe significant changes
in both control and morphology between the two groups of
individuals to achieve this.

The contribution of this paper is twofold: First, we demon-
strate that evolution finds different morphology and control
combinations suitable for our different hardware limitations, en-
tirely by real-world evolution on a robot with self-reconfigurable
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morphology. Secondly, we demonstrate that by having a stable
platform with high-level control, it is possible to do exploratory
multi-objective morphology and control evolution in relatively
few evaluations entirely in hardware. This allows us to investigate
complex real-world dynamics not seen in ER experiments relying
solely on software simulations.

2 Background
This section reviews related work in the area of evolutionary
robotics, with a focus on real world evolution and evolution of
morphology.

2.1 Evolutionary robotics
Modern specialized robots can be hard to develop, and are
often designed by a team of engineers at considerable expense.
Alternatively, in ER, robot controllers and morphologies can
be designed or optimized automatically using evolutionary
algorithms to identify new solutions [5]. In general, evolutionary
design has been used to optimize a robot’s control or morphology
in an off-line fashion, before production, and in a different
environment than where the robot would be working [4]. The
method of embodied evolution uses on-line evolution of robots
in the environment where they will be deployed, and thus the
robots will be able to react to changes in that environment as they
work [6]. Embodied evolution has, however, almost exclusively
been applied to the control of a robot, as very few robots are able
to modify their own morphology during an experiment without
considerable human intervention.

2.2 Real world evolution
Most ER experiments are not performed on physical robots, but
on virtual representations in a simplified physics simulator [3].
Here, the number and speed of evaluations is only limited by
the access to computational power, and thus such experiments
can be performed much faster than their real-world equivalent.
Not only are real-world experiments more expensive in terms of
building and maintaining a robot, but there are challenges due
to noise in measurements caused by the body of the robot, its
dynamic environment, and the interactions between them [7].
These advantages make it easy to see the appeal of only using
simulations for evolutionary robotics.

One of the biggest challenges with using simulation in
evolutionary robots, however, is the reality gap - the discrepancy
between measurements of performance in simulation and the
real world [8]. Modern physics simulators have different
trade-offs between speed and accuracy, and game-based physics
engines often sacrifice accuracy for additional stability [9]. Even
simulators not focused on efficiency or stability can exhibit
accuracy that is too low to allow direct transfers of results to
real world counterparts. There are multiple approaches to deal
with the reality gap, including adding noise in simulation [10],
doing most of the evolutionary search in software before doing
the last part in hardware [11], or by making a model of the
disparity between simulation and reality, and use this to guide
the search [12]. Some of these techniques reduce the reality
gap significantly, but the difference still makes it challenging to
transfer results to the real world - especially as robots are used in
more complex environments. Other techniques guide the search
towards individuals in simulation with behaviors that perform
closer to their real world counterparts, and this might successfully

circumvent some of reality gap problem to the degree where a
subset of solutions might be transfered directly to the real world
[3]. This does, however, limit the results to the small subset
of solutions that has accurate performance in the simulator, and
the search might therefore be drawn towards simple behaviors
without dynamic effects, that are easier to simulate.

Evolving in hardware bypasses the problem of the reality gap
completely, and if evolution is performed on the unrestricted
system in the environment where it will be serving, also bypasses
the problem sometimes seen in simplified or limited experiments
in hardware as well [13]. Evolution in hardware is most often
done off-line to perform a one-time adaptation to a new task or
environment, but can also been done constantly in an on-line
fashion to continuously adapt to both slow and abrupt changes
to the robot itself or its environment [4]. There are several
sources in the real world that contribute to uncertainty and noise
in measurements of performance, but these are in many cases
connected to the, often very complex, interactions between the
control, body, and environment. Being able to study the synergy
between these and see how a robot is able to exploit them
separately and together to solve a given task is not possible in
a simplified physics simulator.

2.3 Evolution of robot morphology
Evolutionary robotics can be used to evolve morphology and
adapt a robot’s body to the task it is solving, and the environment
where it is doing it. It can even make the evolution of control
quicker, and result in more robust gaits [14]. The field of artificial
life evolves virtual creatures, closely related to evolution of robot
bodies, but is mainly concerned with the study of the biological
processes behind the evolution, and experiments are not done
with the intention of producing hardware versions of the resulting
bodies [15]. Most work in evolving virtual creatures is done
in simulation alone, one of the earliest examples being Sims’
work evolving bodies represented by three dimensional boxes
[16]. This has also been done in later work [8], and expanded
to more advanced creatures [17], though there have been several
challenges related to the scalability of these techniques [18].
Evolution of morphology in robotics has also mostly been done
in simulation, though the models used are more realistic than the
virtual creature counterparts, and the intention is most often to
end up with results that could be transferred to the real world.
There are many examples of work evolving the morphology of
different types of robots, for instance wheeled robots [19], legged
robots [20], or even soft robots [21]. Morphology can also be
evolved in modular robotics [22], though this most often refers to
changing the way static modules are assembled.

There are some examples of evolution of robot morphology
in simulation, where a select few morphologies are transferred
for testing in the real world, including both legged [23] and
more non-traditional designs [24], but these require excessive
human intervention for each morphology tested in the real world.
There are examples of morphological evolution in hardware
directly as well, but many require excessive human intervention
to build and assemble new morphologies [25], use slow external
reconfiguration of modular systems [26], or no mechanical
reconfiguration at all [27]. There have been examples of real-
world robot evolution with self-modifying morphology, but only
using the dynamic body to speed up or improve the evolution of
controllers for a single optimal body [14]. The authors are not
aware of any examples of real-world evolution of both control
and morphology for complex legged robots.
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Table 1: Characteristics of the Dynamixel MX-64AT
servos when powered at different voltages.

Parameter name 12V 14.8V
No load speed 63rpm 78rpm

Stall torque 6.0Nm 7.3Nm
Stall current draw 4.1A 5.2A
Stall power draw 49.2W 78.0W

3 Robot and evolutionary setup
In this section we present the physical robot and its control
system, the evolutionary setup, and the physical test setup we
use in our experiments.

3.1 The robot
A custom robotic platform (shown in Figure 1) was used for all
experiments in this paper, and is currently under development
at the University of Oslo. Details on the platform itself can be
found in our previous work [28], and we have previously used it
for evolving control with static morphology [29]. The top frame
measures about 480mm by 300mm, connecting the four legs in
a mammalian configuration. All legs have the ability to change
their length, with a minimum length of 550mm, and maximum
length of 670mm. The middle link, or femur, has a minimum
length of 185mm and a maximum of 210mm, while the lowest
link, tibia, has a minmum length of 255mm and a maximum of
350mm.

Each leg includes three Dynamixel MX-64AT servos, with
onboard PID controllers to receive the angle commands over
USB. These servos are powered at different voltages in the
experiments, and their operating characteristics are shown in
Table 1. Reducing the voltage from the optimal voltage at 14.8V
to a reduced voltage of 12V limits both torque and control by
about 20%.

The reconfigurable legs use small DC motors connected to
lead screws, with aluminium rails for mechanical strength. An
Arduino Mega with a custom shield is used for the control, and
we achieve a sub-millimetre accuracy on the leg length. The low
speed of reconfiguration (≈1mm/s) makes it ineffective to use
these actively during the gait, so they are exclusively used for
changing morphology, and are not seen by the controller.

An Xsens MTI-30 Attitude and Heading Reference System
(AHRS) is mounted close to the middle of the body to measure
linear acceleration, rotational velocity and magnetic fields, giving
data on absolute orientation at 100Hz. Reflective markers are
mounted on the main body of the robot to allow motion capture
equipment to record the position and orientation of the robot at
100Hz. The complete robot weighs 5.5kg, and operates tethered
during all experiments.

3.2 Control system
We use a high-level inverse-kinematics based position controller
for the legs of the robot. The platform also supports a low-
level controller, but this is only used in simulation experiments,
due to the high number of evaluations needed before stable gaits
are found. A continuous, regular crawl gait [30] was chosen,
where the body moves at a constant forward speed during the
gait sequence, and lifts each leg separately to maximize stability.
This setup allows gaits that are statically stable, although the low
weight of the legs in relation to the body makes achieving faster

Table 2: Gait parameters. These have been constrained (*)
to limit the robot to a maximum speed of 10m/min.

Category Name Values

Spline shape step length [ 5mm, 300mm]*
step height [25mm, 75mm]
step smoothing [ 0, 50mm]

Gait timing gait frequency [0.2Hz, 2Hz]*
lift duration [ 5%, 20%]

Balancing wag phase [−0.2, 0.2]
wag x amp [0, 50mm]
wag y amp [0, 50mm]

Morphology femur length [0, 25mm]
tibia length [0, 95mm]

gaits without introducing dynamic effects challenging. The path
for each individual leg end is defined by a Catmull-Rom spline.

The gait generator uses parameter ranges defined in Table 2
and generates a number of control points for the spline, resulting
in a continuous gait path for each leg1. Three parameters are used
for manipulating the control points. The parameter step length
controls the length of the ground contact line, while step height
determines the height of the step. The step smoothing parameter
regulates the angle of movement at the point where the leg hits the
ground, by stretching out the front of the spline. This was added
to allow for a reduction of the impact forces from each step, by
making contact with the ground in a more horizontal direction.

To increase the stability of the gait, a configurable balancing
“wag” movement was added where the robot leans to the opposite
side of the currently lifted leg. This ensures a higher margin
of stability, and is required for a statically stable gait due to the
relatively high mass of the legs compared to the body. Parameters
for the phase and amplitude of the balancing wag can be changed
individually for the lengthwise and sideways movement.

The maximum theoretical speed of the robot is given by the
gait frequency and step length parameters; however, the actual
speed of the robot also depends on its stability, and friction
between its feet and the ground. Setting a high gait frequency
and low step length, and also a low gait frequency and high
step length would result in valid gaits. If both parameters are
set too high, however, the robot might end up damaging itself
by trying to achieve a non-realistic forward speed. We therefore
limit the product of step length and gait frequency to 10m/min.
The lift duration parameter decides how much of the gait period
is used to lift the leg through the air, before beginning the next
step.

The gait is made completely independent of the robot
morphology by sending the goal position of the legs to an inverse
kinematics function that reads the lengths of the legs at 10Hz. No
adaptation of any kind is done in the controller for the different
morphologies, as we do not want to impose any limitations based
on a priori knowledge of the design. It might, for instance, be
intuitive that an individual with longer legs might work better
taking longer steps, but we do not want to add more dependencies
between morphology and control than exists naturally in the
system. Minimizing the dependencies makes it easier to analyse
the results, as there are fewer factors affecting the evolutionary
search and its results.

The control system is implemented in C++ and uses the
software framework Robot Operating System (ROS) [31]. The
leg end positions from the gait controller are sent through an

1Details on control point generation can be found in the source code
at http://robotikk.net/project/dyret/
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Table 3: Parameters for the evolutionary experiments

Name Value
Algorithm NSGA-II
Evaluation time Maximum 60s
Parameters Real: [0, 1]
Recombination None

Mutation

Type: Gaussian
Probability: 1.0
Initial sigma: 1/6
Sigma decay per generation: 0.05
Minimum sigma: 0.05

Evaluations Population: 8
Generations: 8
Runs per experiment: 3
Evaluations per re-evaluation: 10

inverse kinematics function to obtain the angles necessary to
achieve the specified pose. The different functions of the robot
controller are implemented as individual ROS nodes, and run on
a computer connected to the robot by cable.

3.3 Evolutionary setup
Mammal-inspired four-legged robots, as used in this work,
are more prone to fall than spider- or lizard-inspired robots
commonly used in evolutionary robotics. Our robot’s narrow
stance, downward extending legs, and high centre of gravity,
present much more danger of falling to the side than other bio-
inspired designs. To be able to evolve fast gaits that are also
robust on our platform, it is important to include stability as
a fitness objective, in addition to speed. These two goals are
conflicting, as a robot standing still has great stability, while a
fast robot necessarily has some movement that will be interpreted
as instability. We therefore chose the NSGA-II algorithm [32]
to identify a Pareto front of solutions; a number of gaits with
different trade-offs between the two objectives. The software
running the evolutionary algorithm uses Sferes2 [33], a C++
framework for evolutionary experiments.

Parameters are represented as real numbers with the values
shown in Table 2. Gaussian mutation is used on all genes with an
initial sigma of 1/6, which decays per generation to enhance the
exploration early in the search, but still allow exploitation in later
generations. These meta-parameters were tuned to perform well
at the low number of evaluations used in our experiments. Since
both exploration and exploitation is covered by the mutation,
we use no recombination. The step length and gait frequency
are further limited by a maximum theoretical speed of 10m/min.
If after mutation the gait surpasses this limit, mutation is done
again until it is within the limits. Three runs are done for each
experiment, and they all contain 8 generations of 8 individuals
each, for a total of 192 evaluations for each experiment. When
re-evaluating single individuals, they are evaluated 10 times each
to get a satisfactory statistical distribution of their fitness in the
real world. To avoid effects on the performance due to setup,
we did our re-evaluations on a different day than the original
evolutionary runs. The evolutionary parameters are summed up
in Table 3.

Two fitness functions are used in the experiments in this paper,
speed and stability. The speed is calculated by using the duration
of the gait and the Euclidean distance between the start and
end position captured by the motion capture equipment, as seen
in Equation 1, resulting in a measure of traversed meters per

minute. We use a fitness function for stability based on the
orientation and measured linear acceleration from the AHRS. The
full stability objective function, seen in Equation 2, is a weighted
sum of the linear acceleration and orientation function, where acc
are samples from the accelerometer, ang are samples from the
orientation output of the AHRS, i is the sample index, and j is the
axis of the sample. The accelerometer records data in the x, y and
z-axes, while orientation is recorded in roll, pitch and yaw. The
scaling factor α was chosen to provide a balance between the two
stability measurements by having acceleration and orientation
affect the fitness value equally, and was in these experiments set
to 0.02. The stability objective function is negated to allow for
maximization of both objective functions, which means that a
perfectly stable robot has a stability score of 0. Samples in both
functions are recorded at 100Hz.

Fspeed =
‖Pend −Pstart‖

timeend − timestart
(1)

G(A j) =

√
1
n

n

∑
i=1

(A j,i−A j)2

Fstability =−
(

α ∗
axes

∑ G(Accaxis)+
axes

∑ G(Angaxis)

)
(2)

3.4 Physical test setup and evaluations
The goal of the physical test setup is to maximize the quality
of measurements, while minimizing down time and requirements
for human intervention. Motion capture equipment is used to
provide a precise and accurate reading of position for estimation
of speed. The duration of each gait test is chosen to provide a
good balance between the number and accuracy of evaluations,
given the time budget. Each evaluation is obtained by walking
one and a half meters forward, and then walking back to the
start position using the same gait in reverse, before averaging the
fitness values achieved in both directions. Each path is restricted
by a timeout of 15 seconds, to limit the time spent on evaluating
the slower individuals. Evaluating a gait both directions help
cancel out any asymmetric dynamics in the system that is caused
by minor differences in the mechanics of the left and right side of
the robot.

Both the robot and control system are designed to ensure
repeatability for gaits by keeping the distance moved between
each evaluation minimal. This is achieved by having the
robot sequentially lift and reposition the legs to the start pose
of new gaits after each evaluation. Two walking sequences
of 15 seconds, in addition to mechanical reconfiguration and
repositioning of legs before and after the gait, results in a
maximum of about 60 seconds used for each evaluation. Some
human intervention is required if the robot falls, or gets too
close to the perimeter of the experiment area. In practice, such
intervention seems to be required every one to five minutes,
depending on the objectives used and stage of evolution. If the
robot falls or finishes evaluation without being parallel to the
floor, the program pauses and waits for human intervention before
continuing, to ensure only valid fitness scores are recorded.

4 Experiments and results
Our main experiment is comprised of evolutionary multi-
objective runs at the two different voltage levels. We compare
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Figure 2: Comparison between fitness of the last gen-
erations evolved with optimal and reduced voltage. All
individuals are optimized towards the top right, where an
individual would have both high speed and stability. Blue
is evolved at the optimal voltage, while red is evolved at
the reduced voltage.

the fitness from the two groups of runs, and examine the
resulting individuals to identify signs of adaptation of control and
morphology in the populations. A selection of individuals from
the optimal voltage runs is then re-evaluated 10 times each to gain
a representative measurement of their fitness. This re-evaluation
is done at both optimal and reduced voltage to determine how the
change in supply voltage affects performance, and to shed light
on the need for adaptation when subjected to this change. In this
section, we first present the results of the main experiment, before
showing the results from the re-evaluation of individuals.

4.1 Evolutionary runs
The last populations of all runs are shown in Figure 2. The
optimal voltage runs achieve a higher speed of up to 9m/min,
while the reduced voltage runs achieve speeds of just over
6m/min. Even though only optimal voltage individuals achieve
high speeds, the performance of both runs is comparable for small
and moderate speeds. The final populations for both groups have
a reasonably linear shape broken only by a low-stability tail at
around 6m/min in one of the optimal voltage runs.

Figure 3 shows the morphologies that resulted from the runs
with the two different voltages. The colour of the individuals
shows the difference in fitness of the individuals, showing
the relationship between morphology and achieved speed and
stability in the experiments. For the optimal voltage individuals
in Figure 3a, we see a smaller clustering of high femur length
and low tibia length individuals, and a larger clustering of high
tibia length with moderate to low femur length individuals.
They use a maximum of 79% of the available reconfigurable
leg length, while the mean individual uses 50% of its available
reconfigurable length.

For the reduced voltage runs in Figure 3b, we see that
individuals use the whole range of reconfigurable femur length,
but only up to about 60% of the reconfigurable tibia length.
Since the reconfigurable length of the tibia is much longer than
for the femur, we only see up to 68% of the total available
reconfigurable leg length being used, with a mean of about 35%
for the reduced voltage. We also see from the graphs in Figure 3
that the performance of the individuals is not proportional to the
total length of the robot, as several of the tallest robots only have
moderate speeds, and a couple of the shorter individuals have
some of the faster speeds.
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(a) Optimal voltage leg lengths.
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(b) Reduced voltage leg lengths.

Figure 3: The length of the two reconfigurable leg
segments for the last generations of the evolutionary runs.
The colour indicates where in Fig. 2 the individual comes
from, with the fastest robots in red, and the most stable
robots in yellow.

The boxplot in Figure 5 reveals some of the differences in con-
trol and morphology parameters between the populations. There
are clear differences in the tibia length and wag x amp parame-
ters, and moderate differences in femur length, step smoothing,
and step height. A detailed study of how each of the ten
parameters is affected by the hardware limitations is out of the
scope of this paper, so these differences are not investigated
further individually.

However, we wish to analyse them on a group basis, in order
to study the differences in morphology and control between
the optimal and reduced voltage runs. To achieve this, linear
discriminant analysis (LDA) was applied separately to the
morphology and control parameters to give a one-dimensional
representation of each group. This was followed by a Mann-
Whitney U test to establish significance. The Mann-Whitney
U test indicated a significant difference in the one-dimensional
reduction of the two parameters for morphology, femur length
and tibia length, due to the change in voltage (U = 138, p <
0.01), with Cliff’s delta effect size of −0.52. The same analysis
on the eight control parameters reduced to one, also indicated
significant differences (U = 92, p < 0.01), with a Cliff’s delta
effect size of −0.68.

4.2 Re-evaluation of individuals
Since we are using a high-level controller, it can be hard to
directly predict how a change to a robots internal or external
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Figure 4: Fitness of individuals compared to their re-
evaluations at reduced voltage. Green circles show the
fitness at reduced voltage, and the black arrows show the
change in fitness for these individuals.

Table 4: Means and standard deviations of results from the
re-evaluation of selected individuals. The original fitness
from the evolutionary run is included, in addition to re-
evaluated fitness at both optimal and reduced voltage. (*
Statistically significant difference)

Speed Stability
evo optimal reduced change evo optimal reduced change
0.63 0.65±0.02 0.64±0.02 -1.9% -0.11 −0.13±0.00 −0.12±0.00 +8.2%*
2.76 2.80±0.03 2.62±0.02 -6.5%* -0.16 −0.16±0.00 −0.15±0.00 +6.4%*
5.56 5.54±0.06 4.54±0.24 -18.0%* -0.23 −0.22±0.01 −0.25±0.01 -12.8%*
7.31 7.15±0.13 4.60±0.26 -35.7%* -0.26 −0.26±0.01 −0.30±0.01 -14.9%*
8.78 8.96±0.13 5.59±0.17 -37.6%* -0.26 −0.26±0.02 −0.30±0.01 -16.7%*

environment affects it, and we need to verify if adaptation is
actually necessary when changing the voltage, or if the controller
is able to handle both scenarios. For this, we chose five
individuals with different fitnesses from the optimal voltage runs.
These were then evaluated ten times at their original voltage,
before being tested again at the reduced voltage. Re-testing
under the original conditions is important to give an accurate
comparison, as the noise in hardware measurements means that
the single evaluation during evolution might not be representative
of its true performance.

The results are summarized in Table 4. We can observe that for
the two slowest individuals, the stability actually increases, while
the stability decreases by 13% to 17% for the others. All mean
speeds decrease, with the biggest reduction at 38%. All changes,
except in the speed of the slowest individual, were shown to be
statistically significant (p< 0.01) using the Mann-Whitney U test
with Holm-correction of the p-values. Figure 4 shows the change
in fitness from original to reduced voltage, where green circles
denote re-evaluated individuals at the lower voltage. This figure
reveals the large drop in speed for fast individuals particularly
clearly.

5 Discussion
The decrease in performance seen in Figure 4 shows that
lowering the supply voltage of the system affects the robot’s gait.
Reducing both torque and speed of the robot joints yielded a
speed reduction of up to 38% and a stability decrease of up to
17%. This large discrepancy shows the need for adaptation to
keep performing well in dynamic environments with changing
hardware conditions. There is a large number of factors that can

affect the performance of a robot, and it is likely that many robots,
especially if working in complex environments or alongside
other agents, might see similar, or even larger, differences in
performance than we saw here. A robot can adapt to some of
these factors using the evolutionary techniques shown in this
paper, but they have not been tuned to respond quickly to abrupt
changes, and are only meant as an off-line adaptation to new
hardware limitations or environments.

We see from the difference in Figures 3a and 3b that the lower
powered individuals are not able to exploit the full available
length of the legs. This is supported by the fact that the mean
reconfigurable leg length is 50% for optimal voltage runs, and
only 35% for reduced voltage runs. Lower leg lengths can be seen
as a gearing of the motors, as shorter legs trade speed for torque,
and a reduction in leg lengths can therefore be seen as a response
to the reduced torque. An interesting detail shown in Figure 5
is that even though results from the optimal voltage runs have a
higher mean leg length, the femur length is generally highest in
the reduced voltage runs. Even though the interaction of these
parameters under evolutionary optimisation is very complex, and
might require more experiments to be understood fully, we still
see a significant change in both morphology and control, which
shows that the evolutionary search is able to adapt to the new
hardware conditions by utilizing both.

The number of evaluations performed in this real-world
study is limited compared to simulated ER research. Early
experiments showed little to no improvement in fitness past
the sixth generation, so we chose to do eight generations
for a high probability of the search to converge. We also
saw that the resulting populations contained a good number
of individuals with different trade-offs between the different
objectives, indicating that we had sufficient population size.
Considering Figure 2, we see that there isn’t a big difference
in performance of the final populations between the runs, and
we consider it unlikely that more runs would change the results
considerably. Figure 5 shows a large diversity in final populations
for the two groups of runs. We would expect to see much smaller
variations for a converged evolutionary search with one objective,
but that is not the case when doing multi-objective evolution
using NSGA-II. This algorithm has a mechanism for maximising
the fitness diversity in each front of the population, and since
our two fitness objectives are conflicting, we end up with a range
of different individuals with different trade-offs between these
two objectives, which necessarily results in higher diversity in
the populations as well.

Evolving robots in real-world environments is often challeng-
ing due to noise in measurements. The standard deviations in
Table 4 showed only small variations of performance in our
experiments, even when the re-evaluations was done on another
day. These results confirm that we limited noise and uncertainty
in our measurements to an acceptable level.

Figure 4 shows that only the faster individuals suffer signifi-
cant losses in fitness and that more stable individuals are robust to
the reduced supply voltage. Visual observation of the evaluations
suggested that the reduction in performance is most likely caused
by the lower stability. The theoretical speed of the gait is given by
the high-level controller and the gait frequency and step length
parameters, but unstable gaits stumble or miss steps, leading to
lower distances covered in the same time. This indicates that if
we are to deploy this robot in new conditions, it might be wise
to select more stable gaits, as they are most likely more robust to
unknown environments.
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Figure 5: Genotype values and distributions for all individuals in the final generations resulting from the evolutionary runs.

6 Conclusions and future work
In this paper we investigated the effects of lowering servo
torque and speed on evolved robots, and to what degree the
robot through evolutionary techniques was able to adapt to this
change. This large reduction in performance from lowering the
voltage shows the need for adaptation to keep performing well
in dynamic environments with changing hardware conditions.
We showed that the evolutionary search was able to achieve
comparable results to the original run at low and moderate
speeds by changing both the control and morphology of the
robot. We also demonstrated the feasibility of doing multi-
objective exploratory morphology and control evolution entirely
in hardware on our new platform.

An avenue for future expansion of this work would be to fur-
ther investigate the actual contribution from using evolutionary
algorithms over random search, and investigate other techniques
from machine learning to implement on-line optimization as well.
The adaptation to lower servo torque and speed in this paper has
been done off-line, and we expect that doing this adaptation on-
line instead would pose additional challenges with interesting
solutions and results. Adding closed-loop control, opening
up more parameters in the control system, or having separate
parameters for each leg would give the system more possibilities
for adapting, though getting feasible gaits in the start of the search
with a mammal-inspired configuration can be very challenging.
Current methods for generating behavioural repertoires could
benefit from dynamic morphologies. It may also be possible to
reduce the need for human intervention, allowing experiments
in even more complex environments, encouraging investigations
into embodied cognition and the interactions between robot body,
mind, and environment.

We showed that our evolutionary system is able to adapt both
control and morphology to new hardware limitations, but also
that it is possible to do multi-objective exploratory morphology
and control evolution in relatively few evaluations entirely in
hardware, hopefully inspiring more researchers to take the leap
into real world evolutionary experiments.
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Tønnes F. Nygaard, Charles P. Martin, Eivind Samuelsen, Jim Torresen and Kyrre Glette
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Abstract – The complexity of a legged robot’s environment
or task can inform how specialised its gait must be to ensure
success. Evolving specialised robotic gaits demands many
evaluations—acceptable for computer simulations, but not
for physical robots. For some tasks, a more general gait,
with lower optimization costs, could be satisfactory. In this
paper, we introduce a new type of gait controller where
complexity can be set by a single parameter, using a dynamic
genotype-phenotype mapping. Low controller complexity
leads to conservative gaits, while higher complexity allows
more sophistication and high performance for demanding
tasks, at the cost of optimization effort. We investigate
the new controller on a virtual robot in simulations and
do preliminary testing on a real-world robot. We show
that having variable complexity allows us to adapt to
different optimization budgets. With a high evaluation
budget in simulation, a complex controller performs best.
Moreover, real-world evolution with a limited evaluation
budget indicates that a lower gait complexity is preferable for
a relatively simple environment.

1 Introduction
Robots are used in more and more demanding and changing
environments. Being able to adapt to new situations, unexpected
events, or even damage to the robot itself can be crucial in many
applications. Robots that are able to learn and adapt their walking
will be able to operate in a much wider range of environments.

Selecting a suitable gait controller for a robot learning to walk
can be very challenging, especially when targeting hardware
platforms. A controller is often chosen early in the design
process of a robot, and is used in a wide range of different
evaluation budgets and environments. Simple controllers produce
gaits with a limited diversity. More complex gait controllers are
able to produce a wider range of gaits, with higher variance in
performance and behaviors.

Controllers that are too complex might exhibit bootstrap
problems, where the initial random population does not contain a
suitable gradient towards better solutions [1]. Random solutions
might also exhibit a high probability of the robot falling, making
it more challenging to evolve in hardware. Another important
factor is the larger and more complex search space, which might
require more evaluations to converge than practically possible
without simulations [2].

A controller can be made simpler by embedding more prior
knowledge, for instance by reducing the allowable parameter
ranges of the controller. When the size of the search space
is reduced, fewer evaluations are needed, and with more
conservative parameter ranges, falling can be greatly reduced.

Reducing the gait complexity too much, however, leaves the
system with a very narrow and specialized controller that might
not be able to produce gaits with the varied behaviors needed to
adapt to new environments or tasks, and limitations set by human
engineers might discard many near-optimal areas of the search
space.

Being able to find the right complexity balance when
designing a controller can be very challenging. Any choice made
early in the design process might not suit future use, and picking
a single controller complexity for all different uses might end up
being a costly compromise reducing performance significantly.
We have experienced this challenge in our own work where
experiments are performed with a four-legged mammal-inspired
robot with self-modifying morphology in both simulation and
hardware [2]. Balancing the need for a low complexity controller
when evolving morphology and control in few evaluations in
hardware without falling, and evolution in complex and dynamic
environments requiring exotic ways of walking in simulations,
has proven impossible with our earlier controller design [3].

In this paper, we introduce a new controller where the
complexity can be set by a single parameter that addresses this
limitation. We use a dynamic genotype-phenotype mapping,
illustrated in Fig. 1, where higher complexity controllers map
the genotypic space to a larger controller space than lower
complexity controllers. This allows a more flexible gait either
when an evaluation budget allows for longer evolutionary runs,
or when the added flexibility is needed for coping with difficult
environments. Less flexible gaits can be used when there is a
stricter evaluation budget, for instance in real-world experiments.
We have investigated the controller in simulation with our four-
legged mammal-inspired robot, and found that different gait
complexities are optimal under different evaluation budgets. We
also verified this through initial tests on the physical robot in the
real world. This suggests that our new controller concept will
be useful for coping with the competing demands of freedom
versus ease-of-learning, especially important when evolving on
both virtual and real-world robots.

The contribution of this paper is as follows: We introduce
the concept of a variable complexity gait controller, and show
how this can be implemented for a quadruped robot. We then
demonstrate its value through experiments in simulation, and
verify the results with preliminary testing on a physical robot in
the real world.

2 Background
Evolutionary robotics uses techniques from evolutionary com-
putation to optimize the brain or body of a robot. It can be
used directly to improve the performance of a robot, or to study
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Figure 1: This diagram shows the concept of a variable complexity controller. The genotypic space is always the same size,
but the mapping to controller space is changed by the controller complexity parameter, giving safer and more conservative
gaits at lower controller complexities.

biological processes and mechanisms. When optimizing the
brain of a robot, high-level tasks like foraging, goal homing or
herding can be evolved, or lower level functions like sensory
perception or new walking gaits. Optimizing the body of a
robot allows adaptation to different tasks or environments, and
research has shown that the complexity of evolved bodies mirror
the complexity of the environments they were evolved in [4].

Several different types of optimization algorithms from
evolutionary computation are used to optimize robot control. The
most common is the Genetic Algorithm (GA) [5], which uses
genetic operators like mutation and recombination to optimize
gait parameters. It is often done using multiple objectives, in
many cases achieving a range of solutions with different trade-
offs in conflicting objectives, including speed and stability [6], or
even speed, stability, and efficiency [7]. Evolutionary Strategies
(ES) feature self-adaptation, by adding the mutation step size to
the individuals. This has been shown to speed up the search,
and in some cases outperform traditional EA approaches, when
evolving quadrupedal robot gaits [8]. Genetic Programming (GP)
represents individuals as tree structures rather than vectors, and
has been shown to outperform simple GA algorithms when used
to evolve quadruped gaits [9]. Quality-Diversity algorithms aim
to build up an archive of solutions that exhibit different behaviors
or characteristics that all perform as well as possible [10]. This
set of diverse individuals then serves as a pool of solutions that
can be searched through to find solutions to new problems, like a
robot adapting to a broken leg [11].

Optimizing how a robot walks can be very difficult, and one
of the biggest challenges is the bootstrap problem [1]. It can be
very hard to start optimizing a robot gait if none of the random
individuals tested initially provides a gradient towards good
solutions. This is mostly a problem when optimizing in hardware,
with much harder time constraints and potential physical damage
to the robot. It can, however, also affect simulations, where initial
individuals without any ability to solve a task can completely
remove the selective pressure from the fitness functions needed
for evolution to succeed.

There is a wide range of gait controller types used in
evolutionary robotics, depending on what is being optimized.
They are often divided into two categories, based on whether they
work in the joint space, or Cartesian space [12]. A gait can either
be represented as a few discrete poses with trajectories generated
automatically between them, or as a continuous function that
specifies the position or joint angles at all times. Some gait
controllers use simple parameterized functions that control the
joint space of the robot [11, 13]. Other gait controllers used
in evolutionary experiments consist of a parameterized spline
that defines each legs trajectory in Cartesian space. Evolution
optimizes either the position of the spline points directly [8], or
some higher level descriptors [6, 14]. Other controllers are based
on central pattern generators of different architectures and models
[15]. Some produce neural networks using techniques such as
Compositional Pattern Producing Networks (CPPN), which has
an inherent symmetry and coordination built-in. This can lead to
gaits far surpassing the performance of hand-designed gaits based
on parameterized functions [16].

The field of neuro-evolution often evolves the structure of the
neural networks making up the gait controller, in addition to the
connection weights. This goes against the general trend in other
fields, where the complexity of gait controllers is most often kept
static. Togelius defines four different categories [17]. Monolithic
evolution uses a single-layered controller with a single fitness
function. Incremental evolution in neuro-evolution has several
fitness functions, but still one controller layer. Modularised
evolution has more controller layers, but a single fitness function.
Layered evolution uses both several controller layers, and several
fitness functions. When evolving the complexity of a network,
it has been shown that new nodes should be added with zero-
weights [18], allowing evolution to gradually explore the added
complexity.
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3 Implementation

3.1 Robot
The experiments in this paper were performed on a simulated
version of “DyRET”, our four legged mammal-inspired robot
with mechanical self-reconfiguration [3]. The robot platform is
a fully certified open source hardware project, with source and
details available online1. We use the Robot Operating System
(ROS) framework for initialization and communication, and the
simulated version runs on the Gazebo physics simulator. The
robot and its simulated counterpart can be seen in Fig. 2.

Figure 2: The physical robot on top, and the simulated
robot on the bottom.

The robot uses Dynamixel MX-64 servos from Robotis in the
hip joints, and Dynamixel MX-106 servos for the two lower
joints. Its legs consist of two custom linear actuators each that
allow reconfiguration of the leg lengths during operation. More
mechanical details can be found in our previous work [3], and is
not included here due to space constraints and the fact that we are
mainly using a simulated version for our experiments.

3.2 Control
In our earlier experiments, we used a fairly standard parame-
terized spline-based gait controller working in Cartesian space.
We have used the controller for evolving both control and
morphology on the physical robot, with a complex search space
with many degrees of freedom. This required us to have a low

1https://github.com/dyret-robot/dyret_documentation

Air front

Air
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Air back

Ground front Ground back

Figure 3: A simple example leg trajectory, seen from the
side. The tip of the leg follows this path when the robot
walks. The front of the robot is to the left.

complexity controller, but that meant it was not flexible enough
to give us more complex gaits when we had higher evaluation
budgets, such as when using simulations. Our goal was for the
new controller to be adaptable to fit whatever needs we currently
have or might have in the future, with a controller complexity that
could be changed with a single parameter.

3.2.1 The gait controller

Since this gait is used on a physical mammal-inspired robot, the
property of being learnable without excessive falling is important,
and a much bigger challenge than for spider-inspired robots. We
believe that a controller operating in joint space would not allow
robust enough gaits at low controller complexity for our robot,
so we chose to implement it in Cartesian space. There are many
ways a gait can result in a fall, but ensuring that all legs on the
ground are moving in the same direction with the same speed
severely limits the chance of falling. Complementing this with a
wide leg stance gives a good base to build a parameterizable gait
controller on. Ensuring that only one leg is in the air at a time,
and that the robot is always using the proper leg lift order, further
helps the robot to remain stable.

3.2.2 Leg trajectory

The control system uses standard inverse kinematics to get the
individual joint angles from the calculated positions. The leg
trajectory is parameterized using an interpolating looping cubic
Hermite spline, which intersects five control points. A simple
example trajectory can be seen in Fig. 3. The start and end point
of the spline are on the ground, while the other three points define
how the leg moves forward through the air. The leg moves in a
straight line on the ground, parallel to the body of the robot, so
only two parameters decide their positions. The three points in
the air are all three dimensional, with sideways movement being
mirrored between left and right legs. This gives a total of 11
parameters that define the spline shape.

The two control points along the ground are sorted so that
they always move the leg backward, while the order of the three
control points in the air is chosen with an order resulting in the
shortest possible spline. This ensures that no looping or self-
intersection can happen, and allows all gait parameters to be set
without constraints. A parameter for lift duration specifies the
time the leg uses to lift back to the front, given in percentage of
the gait period, while the frequency parameter gives the number
of gait periods per second.

3.2.3 Balancing wag

In addition to positions generated for individual legs, a balancing
wag is added to all legs. Due to the leg lift order, this can not
be a simple circular motion, but needs different frequencies for
the two axes. The movement allows the robot to lean away from
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the leg it is currently lifting, and gives better stability. Equation
1 shows how the wag is defined, with t defining the current time,
and T the gait period. 0.43 is a factor to offset the movement
between the two wag axes to align them with the gait. It has a
phase offset (Wφ ) that allows for tuning to dynamic effects of the
robot, while amplitude can be set separately for the two directions
(Ax/Ay).

Wx =
Ax

2
∗ tanh(3∗ sin(

2π ∗ (t +(Wφ ∗T ))
T

))

Wy =
Ay

2
∗ tanh(3∗ sin(

2π ∗ (t +(Wφ +0.43)∗ T
2 )

T
2

))

(1)

3.2.4 Complexity scaling

The complexity of the controller can be modified by a single
parameter, from 0 to 100%. There are many ways to provide
a scaling of the complexity of the controller, but we chose to
implement this using a dynamic genotype-phenotype mapping
that varies the range of gait parameters linearly with the controller
complexity. All controller parameters have a center value, that
together with the minimum range gives the allowable range at
controller complexity 0%. These have been chosen so they
represent a very conservative and safe controller that should work
well in most conditions, based on traditional robotics techniques
and earlier experience with the robot. Using a more complex
controller by allowing a large range of values, however, allows
the controller to deviate from the safe values and into the more
extreme values often needed for more complex environments or
tasks. Parameters controlling the spline shape can be seen in
Table 1, with high-level gait parameters in Table 2.

Table 1: Parameters and ranges defining the spline shape

Control point Minimum Maximum Default value Min range
Ground front -150 150 50 50
Ground back -150 150 -100 50
Air 1 [-25, -150, 10] [25, 150, 80] [0, 75, 30] [0, 50, 10]
Air 2 [-25, -150, 10] [25, 150, 80] [0, 0, 50] [0, 0, 10]
Air 3 [-25, -150, 10] [25, 150, 80] [0, -75, 50] [0, 50, 10]

Table 2: Parameters and ranges of gait parameters.

Parameter Minimum Maximum Default value Min range
Wag phase -π/2 π/2 0 0.2
Wag amplitudes 0 50 0 5
Lift duration 0.05 0.20 0.175 0.05
Frequency 0.25 1.5 - -

Examples of splines with different gait complexities can be
seen in Fig. 4. For complexities of 0, the splines are fairly con-
servative, but even though the parameter ranges are low, they do
show some variation in their basic shapes. The higher complexity
gaits have spline shapes that are much more unconventional,
though sorting the control points to minimize spline length does
remove self-intersections to keep all trajectories feasible. Please
note that the plot shows the commanded position to the robot,
and that the actual leg trajectory can be very different than
commanded, due to the mechanical and control properties of the
actuators, and the dynamics of the system. Very complex shapes
that appear unintuitive for human engineers might end up giving
much smoother and higher performing gaits in the real world than
expected.

3.3 Evolutionary setup
Here we describe the setup we used for evolving the controllers,
as well as how we evaluated them. We evolved controllers for
both stable and fast forward walking on flat ground.

3.3.1 Evolutionary algorithm and operators

We used the NSGA-II evolutionary algorithm, running on the
Sferes2 evolutionary framework. We chose this algorithm since
we are optimizing both speed and stability, but would not like to
choose the specific trade-off between the two objectives before
optimization. NSGA-II features a mechanism to increase the
crowding distance in the Pareto front, which gives a wide range
of trade-offs to pick from.

Gaussian mutation was used with a mutation probability of
100% and a sigma of 1/6. No recombination operators were used.

Early experimentation showed a big difference in the number
of evaluations before convergence for different controller com-
plexities, which suggested the need for different population sizes.
We tested a range of different population sizes at the minimum
and maximum complexity, as well as a few points in between,
and found that a population of eight at zero complexity, and 64 at
full complexity worked best. Population sizes for all intermediary
complexities were set linearly, and rounded to the nearest power
of two. Tests showed that runs at all gait complexities converge
to a satisfactory degree after 8192 evaluations.

We performed 25 runs for each controller complexity in
simulations to gain a good estimate of the performance. Each
simulated run took about 11 hours, and we used about 10,000
CPU core hours on the simulation for the experiments featured
in the paper. Experiments in the real world take a lot longer, so
we only performed three runs for each controller complexity, as
the experiment only serves as a preliminary test to see confirm
simulated results in the real world.

3.3.2 Fitness objectives

We used both speed and stability as our fitness measurements.
Speed was calculated as the distance between start and stop
position, divided by the evaluation time, as seen in equation
2. Distance was measured using motion capture equipment
in the real world, and extracted directly in simulation. Only
the speed straight forward was used, so we filtered out any
sideways movement by only measuring position in the forward
axis. Stability was calculated with a weighted sum of the variance
in acceleration and orientation. The full fitness function for
stability can be seen in equation 3, where acc are samples from
the accelerometer, ang are samples from the orientation output
of the Attitude and Heading Reference System (AHRS), i is the
sample index, and j is the axis of the sample. The Xsens Mti-30
AHRS was used on the physical robot, and a virtual version of
the same was used in simulation.

Fspeed =
‖Pend −Pstart‖

timeend − timestart
(2)

G(A j) =

√
1
n

n

∑
i=1

(A j,i−A j)2

Fstability =−
(

α ∗
axes

∑ G(Accaxis)+
axes

∑ G(Angaxis)

)
(3)
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Figure 4: Examples of leg trajectory splines generated at different gait complexities. These are seen from the side of the
robot, with the front of the robot to the left of the plot. The red boxes show the range of possible control point positions.

3.3.3 Evaluation

We ran all our simulations on the Gazebo physics simulator. Each
gait was evaluated in simulation by walking forwards 1 meter,
with a timeout of 10 seconds. The position and pose of the robot
were reset between all evaluations.

Evaluating and comparing the performance of different
optimization runs can be challenging when doing multi-objective
optimization. This is especially true when using an algorithm
like NSGA-II, that has a mechanism for stretching out the Pareto
front, making it hard to compare the two objectives separately.
Therefore, we instead looked at the hypervolume [19] when
comparing populations. The hypervolume measures the volume
(or area, in the case of two objectives) of the dominated part of
the objective space. The lower bound of stability was set to -1 for
the hypervolume calculation, while speed was capped to 0 m/min.

4 Experiments and results
We present the results of experiments in simulation and on a real-
world robot. These experiments are simplified and performed
with as many variables removed as possible. The robot’s task
is to walk straight forward, and the environment is a flat surface
with medium friction, both in simulation and the real world.

4.1 Finding the maximum needed
complexity

First, we wanted to investigate whether there is a maximum
controller complexity needed for the environment and task we
are using. Since neither is very challenging, we do not expect the
need for very complex controllers. We ran full evolutionary runs
at a range of gait complexities.

Fig. 5 shows how the hypervolume progresses over evalua-
tions. This shows that the lower complexity controllers converge
quicker, but are not able to achieve the same performance as the
higher complexity controllers. The 50% and 100% complexity
controllers end up with the same performance, though the 100%
complexity controller takes considerably longer to converge.
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Figure 5: Hypervolume from evolutionary runs with
selected gait complexities. The solid lines show the means,
with 95% confidence interval in the shaded areas.
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Figure 6: Hypervolume for runs with gait controller
complexities ranging from 0% to 100%, showing details
from the end results of the optimization process.

The details of the last evaluations of the runs are better
illustrated with the boxplots, seen in Fig. 6. These show
the distribution of the hypervolumes achieved at the end of
all the optimization runs. The hypervolume improves for gait
complexities from 0% to 40%, but there is no improvement
between 40% and 50%. 100% complexity has a wider spread than
the others, which might be beneficial in some applications, but the
median performance is no better than the 40-50% complexity.
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Figure 7: This figure shows how different controller
complexities affects achievable hypervolume for different
evaluation budgets. The vertical lines show the standard
deviation, while the shaded areas show the 95% confidence
intervals.

4.2 Complexity for different evaluation
budgets

A potentially rewarding feature of controlling the complexity
of the gait is the ability to adapt it to a specific evaluation
budget. The price of computational resources is decreasing,
enabling a large number of evaluations in simulation. Hardware
experiments, however, are limited by the number of robots that
can be built, maintained, and supervised during experiments.
Evaluation is therefore much more expensive for hardware
experiments than for simulations, and this gap will only increase.

For this investigation, we have selected a range of different
evaluation budgets to test. We have previously used 64 and
128 evaluations in our hardware experiments [14, 2], and 512,
2048 and 8192 evaluations gives a range more appropriate for
simulation experiments.

Fig. 7 shows how the controller complexity affects achieved
hypervolume for the different budgets. For the shortest two
simulation cases, with 64 and 128 evaluations, hypervolume is
highest at 10% complexity. Budgets 512 and 2048 achieve the
best performance around 30%, while the long simulation case
performs best at 40%-100%.

4.3 Analyzing resulting populations
Figure 9 shows which parameters are tested at various parts of the
search. Some parameters, like the y position of the back ground
control point, end up close to their conservative estimate, and do
not exploit their additional freedom from the higher complexity in
our simple experiments, as seen in Figure 9a. Other parameters,
like the y position of the front ground control point, do use more
of their available range, although it is still close to its original
estimate. In Figure 9c, the search with 50% controller complexity
seems to maximize the x position of the third air control point
in the spline, while with the whole area available in the 100%
complexity controller, it ends up minimizing it.

4.4 Initial hardware testing
We also did evolutionary runs using this new controller on the
physical robot in the real world with 64 evaluations per run,
using eight generations of eight individuals. We decided to test
a controller complexity of 0%, as well as 50%, which is the
highest complexity we were confident in using on the physical
robot without excessive risk of physical damage to the system.
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Figure 8: This figure shows the performance on the real
robot, compared to the simulated version seen in Fig. 7.
The added green dots are the resulting hypervolume from
each of the runs in hardware.

We also tested 20%, which gives us another data point between
these, and was among the two top performing complexities in
simulation with this evaluation budget. The results can be seen
in Fig. 8, where we can see the same general trends as in the
simulator. Controller complexities 0% and 20% both did well,
and we are not able to separate the two with the limited number
of evaluations we were able to do in hardware. 50% controller
complexity, however, does considerably worse than the other two,
just as we saw in simulation.

5 Discussion
The performance differences in Fig. 7 suggest that choosing
the right controller complexity for an evaluation budget can be
very important, especially when that budget is small. Lower
complexity controllers fall less, so if optimization is done in
hardware, this could also be taken into account when deciding
on the complexity. We did a simple grid-search for our
experiments since we were only investigating the controller,
but more advanced search algorithms could be be performed to
further optimise the choice of complexity.

We used different population sizes when evolving with
different complexities in our experiments. Our controller was
designed to be evolved with evaluation budgets as small as 32
or 64 evaluations when doing real world experiments, and with
budgets larger than 8192 when evolving in simulation. Limiting
the population size to the smallest budget would give a very
unrealistic measurement of performance for the larger budgets,
and thus we chose suitable population sizes for the different
complexities through simple trial and error. This does obfuscate
the results to a degree, but we feel this gives the most fair
comparison. The evolutionary operators would likely also be
slightly different, but they were kept the same as they affect the
search to a much smaller degree.

The parameter for the x position of the third air control point,
seen in Fig. 9c, seems to be maximized at 50% complexity, but
be minimized at 100% complexity. This is most likely due to
interactions between different parameters. At half complexity,
the optimal value might be towards the top of the parameter
range. At full complexity, however, new ranges for the other
parameters are opened up, allowing better performance for lower
parts of the range.

The choice of centers and minimum ranges for each gait
parameter greatly affect the performance of lower complexity gait
controllers. The choice should be based on conservative values
that are assumed to work sufficiently in all environments, not
on optimal values for a single environment. Evolution is often
used to adapt to changes in environments or tasks. If the centers
and ranges were chosen after optimal solutions were found, they
would most likely not perform well when things change, and
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(a) The y position of the second ground control point in the spline.
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(b) The y position of the first ground control point in the spline.
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(c) The x position of one of the air control points in the spline.
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Figure 9: Values of a select few parameters throughout the optimization run. The solid red lines show the range of the
parameters, and the dashed red lines trace the range from the other complexities to ease comparison.

one might as well just select the top performing individuals from
simulation directly. In our case, we selected these values before
doing the optimization, and several are far from optimal. This can
be seen in Fig. 6, where the performance of the low complexity
controller is much worse than for the higher complexity ones.
This is by design, as safe and conservative parameters that work
for all environments rarely do very well in any of them.

The choice of maximum ranges also affect the outcome, but
not to as high a degree as the center and minimum range.
Limiting the ranges too much means the controller will never
be able to achieve the potential increase in performance from
that specific controller feature. Having ranges that are too large,
with values that will never be optimal under any circumstance,
serves to slow down the search, and waste time and resources.
A good optimization algorithm that is not getting stuck in early
local optima, however, should be able to converge outside these
infeasible areas. We therefore recommend anyone implementing

this type of controller to spend some time choosing parameter
centers and minimum ranges to be conservative and safe, but not
be afraid to overshoot a bit on the maximum allowable range,
as the consequence of choosing ranges that are too narrow is far
worse than selecting too high.

Figure 8 shows the results from the testing in hardware. We are
unable to say anything definitive with the results due to the low
number of evaluations and the relatively high degree of noise,
but it does support what we found in simulation. Not only did
the 50% controller complexity perform worse, like predicted in
simulation, but we also experienced qualitatively more extreme
gaits, and actually had to pause the evolutionary runs at several
times to repair the robot after damage. We also experienced
several falls with the 50% controller complexity, but no falls or
damage at the two lower complexities, supporting our original
assumption that the gait values were conservative and safe.

We consider this type of controller to be very useful for
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researchers doing gait optimization in the real world on physical
robots, as the reality gap can often times make it impractical
or impossible to directly use individuals from simulation in the
real world. Simulations can be used to find approximate upper
bounds of the needed complexity as we saw in Fig. 6, but even
more useful is being able to tune the complexity to the limited
evaluation budget used in hardware, as seen in Fig. 7. We also
expect that more demanding or dynamic environments and tasks
might be able to exploit higher complexities better than what
we experienced in our experiments, which only included forward
walking in straight lines on even terrain.

6 Conclusion and future work
In this paper, we introduced our new gait controller with variable
complexity. We tested the controller in simulation, and found that
different gait complexities are optimal for different evaluation
budgets. We also did preliminary tests on a physical robot in
the real world that supported our findings. Being able to change
the controller complexity allows a researcher to use less complex
controllers when optimizing gait on a physical robot, and increase
the complexity when needed for demanding environments, or
when doing longer optimization in simulations.

One natural extension of our work is to use our variable
complexity controller in incremental evolution. Since this con-
troller offers a continuous complexity parameter, the difficulty
can be gradually increased for each generation. Since an
increase in difficulty follows a known set of rules, all individuals
can keep their phenotypic values between generations, even
when parameter ranges are expanded. This allows evolution
to gradually explore the added complexity, in the same way
that has been shown to be optimal for neuro-evolution [18].
The controller complexity can also be changed during the
evolutionary process as part of evolutionary strategies, or be
controlled during robot operation as part of lifelong learning.

We have only tested this controller in a single environment
in simulation where complexities over 50% were not needed. It
would be interesting to test it in more challenging and dynamic
environments to see if controllers with higher complexities are
able to use the increased parameter ranges to actually increase
performance. Doing a more thorough investigation into the
parameters selected might yield ranges or values that act limiting
on the fully complex controller, and would allow even more
flexible gaits. Analyzing the individual leg trajectories evolved
would also be interesting, and could shed light on the matter from
a different perspective. Investigating how evolutionary meta-
parameters interact with the complexity would be interesting,
including population size and evolutionary operators. Adding
sensing and allowing the robot to choose which complexity is
needed for its current environment is also worth exploring.
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