
Evolution of linkages for prototyping of linkage
based robots

Emma Stensby Norstein
Department of Informatics

University of Oslo
Oslo, Norway

Kai Olav Ellefsen
Department of Informatics

University of Oslo
Oslo, Norway

Frank Veenstra
Department of Informatics

University of Oslo
Oslo, Norway

Tønnes Nygaard
Department of Mechanical, Electronic and Chemical Engineering

Oslo Metropolitan University
Oslo, Norway

Kyrre Glette
RITMO, Department of Informatics

University of Oslo
Oslo, Norway

Abstract—Prototyping robotic systems is a time consuming
process. Computer aided design, however, might speed up the
process significantly. Quality-diversity evolutionary approaches
optimise for novelty as well as performance, and can be used to
generate a repertoire of diverse designs. This design repertoire
could be used as a tool to guide a designer and kick-start
the rapid prototyping process. This paper explores this idea in
the context of mechanical linkage based robots. These robots
can be a good test-bed for rapid prototyping, as they can be
modified quickly for swift iterations in design. We compare three
evolutionary algorithms for optimising 2D mechanical linkages:
1) a standard evolutionary algorithm, 2) the multi-objective
algorithm NSGA-II, and 3) the quality-diversity algorithm MAP-
Elites. Some of the evolved linkages are then realized on a
physical hexapod robot through a prototyping process, and tested
on two different floors. We find that all the tested approaches,
except the standard evolutionary algorithm, are capable of
finding mechanical linkages that creates a path similar to a
specified desired path. However, the quality-diversity approaches
that had the length of the linkage as a behaviour descriptor were
the most useful when prototyping. This was due to the quality-
diversity approaches having a larger variety of similar designs
to choose from, and because the search could be constrained by
the behaviour descriptors to make linkages that were viable for
construction on our hexapod platform.

Index Terms—Robots, Mechanical linkages, Evolutionary al-
gorithms, Quality-Diversity

I. INTRODUCTION

Robots are becoming more and more common in everyday
life, automating tasks both for individuals and companies.
As a larger diversity of robots are being designed, tools to
aid and speed up the design process are becoming relevant.
Designing a robot by hand is a difficult task that requires
expert knowledge and is time consuming [1]. One way to
speed up the process is to offload some of the design to a
computer. The engineer could select from a variety of designs
presented by a computer, and then adjust the design to the
requirements of the robot. This paper is a study of how this
variety of initial designs can be generated in the context of
linkage based robots.

Fig. 1. A linkage and its path generated by the 2D linkage simulator. The
yellow node is the motor, the turquoise nodes are static, and the purple nodes
are movable. The green points show the path that the foot of the linkage
follows. The color of the beams are arbitrary.

Fig. 2. The hexapod robot platform used for testing the evolved mechanical
linkages, and the two floor textures it is tested on.

We believe evolutionary algorithms [2] can be a viable
approach to creating initial robot designs. Evolutionary al-
gorithms have a long history in the field of evolutionary
robotics for optimising robot morphology and control [3], [4],
[5]. A subclass of evolutionary algorithms, that are especially
interesting in this context, are quality-diversity algorithms [6].
These algorithms optimise for diversity or novelty along with



Fig. 3. Decoding of a genome to a linkage. Each section of seven numbers are decoded into one node. The first section is a special section containing the
x and y positions of the three static nodes relative to the motor node, and the length of the crank (the beam directly turned by the motor). The first number
(type) determines whether the new node is attached by one (below 0.25 as in 4.) or two beams (above 0.25 as in 2.). If the node is attached by one beam
the new beam is treated as an extension of an already existing beam. If attached with two beams the new beams can rotate freely. The remaining numbers
determine properties of the nodes. The floating point numbers are translated to fit the range of the relevant property. Unlike Type all values in the remaining
properties have an equal probability of being chosen. The ranges are as follows: Node: [0, existing nodes), Beam: [0, existing beams), Direction: [0,1], Angle:
[0, 2*PI), Length: [Min possible beam length, Max possible beam length].

performance, and often save a repertoire of found solutions
[7]. Quality-diversity algorithms have attracted interest as a
method for co-optimising robot morphology and control [5],
[8], [9]. The quality-diversity algorithm MAP-Elites (Multi-
dimensional Archive of Phenotypic Elites) [10], and extensions
such as SAIL [11], have previously been used in evolution
of modular robots [12], [13], [14], and as a suggestion giver
for prototyping in other design tasks [11], [15]. MAP-Elites
can be a powerful tool when prototyping robots. Its diversity
promoting repertoires can ensure a wide variety of design
suggestions, and can be structured in ways that are easy to
navigate. To our knowledge we are the first to combine MAP-
Elites as a design suggestion giver with an iterative prototyping
process on a physical robot.

To allow for quick design iterations on the physical robot,
we choose mechanical linkage based robots as our platform.
We find that mechanical linkages is an appropriate test-bed,
as new linkages can quickly be created by taking apart and
reconnecting beams in different ways, while the chassis of
the robot remains the same. The synthesis of mechanical
linkages is a well studied field stretching back over a hundred
years [16]. Many have used genetic or other optimisation
algorithms to create linkages that follow specific paths, often
by optimising the length of the beams in a specific linkage
configuration [17], [18], [19]. Mechanical linkages have been
used in many industrial applications, and also in robotics for
locomotion [20]. Theo Jansen was one of the first to use
genetic algorithms to optimise a linkage based walker [21].
Linkage based robots can work with few motors and can
therefore be useful for locomotion if a lighter and more energy
efficient robot than a regular legged robot is needed. However,

linkage based robots are more constrained than regular legged
robots. When the robot has been built, the path the legs
follow usually cannot be changed without reconstructing the
robot, unless self modifying properties have been built into
the linkage parts [22].

We test three evolutionary approaches for generating me-
chanical linkages to be used on the robot. The three evolu-
tionary algorithms are 1) a standard evolutionary algorithm
[2], 2) the multi-objective evolutionary algorithm NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [23], and 3) the
quality-diversity approach MAP-Elites [10]. We also test two
different fitness definitions. The methods are compared with
regards to the best fitness found, and on a qualitative analysis
of the generated paths. Some linkages are then realised on a
hexapod robot through prototyping, while using the repertoires
of generated linkages as a design aid. The robots are tested on
two floors with different properties, and we attempt to assess
how the repertoires can be used to adapt the linkages to the
floor textures.

The contributions of this work are twofold: 1) We com-
pare several evolutionary approaches for designing mechanical
linkages, in an attempt to find the most efficient method for
evolving mechanical leg mechanisms for a hexapod robot.
2) We demonstrate how evolved repertoires of mechanical
linkages can be used as part of a prototyping process with
a physical linkage based hexapod robot platform.

II. METHODS

We have implemented a simple 2D simulator in Python
for simulating mechanical linkages, which is used to evaluate



potential robot designs1. We compare three different evolu-
tionary algorithms for optimising the linkages 1) a standard
evolutionary algorithm [2], 2) the multi-objective evolutionary
algorithm NSGA-II [23], and 3) the quality-diversity algorithm
MAP-Elites [10]. A few solutions from the MAP-Elites ap-
proach are tested on a physical robot, when we demonstrate
how the repertoires of evolved linkages can be used during
robotic system prototyping.

A. 2D linkage simulator

Figure 1 shows a linkage in the 2D simulator for mechanical
linkages. A linkage consists of a crank, three static nodes, as
well as several beams connected at free nodes, making up the
linkage mechanism. The three static nodes represent where the
linkage is connected to the robot, and the crank is the linkage
beam that is connected to the motor. The simulator calculates
the path each node in the linkage will follow when the crank
is rotated one full rotation. The simulator iterates through
angles for the crank, and the positions of all the nodes in the
linkage are calculated with trigonometry, starting at the static
and crank nodes, and moving outwards through the linkage.
The lowest node in the linkage is defined as the foot of the
robot, as this is the node that will touch the ground. The foot
determines the node path returned by the simulator.

B. Linkage encoding

A linkage is encoded by a vector of floating point numbers
within the range 0 to 1. The vector is divided into several
sections, the first describing the crank and positions of the
static nodes, and each following section describing a node that
is added to the linkage. A newly added node will be attached
to the linkage by either one or two beams. A node connected
with only one beam will always be statically connected to
another beam, and will only rotate along with its connected
beam to simplify the simulation. If a node is connected by
two beams, the beams can rotate freely. This simplification
gives two benefits 1) the position of the foot of the linkage is
deterministic based on the position of the crank, and will thus
always move along the same path with each rotation of the
crank, and 2) the position of the foot can be calculated with
trigonometry for each crank position, making the simulation of
the linkage very efficient. The decoding of a linkage encoding
is described in Figure 3.

C. Mutation

During the evolution the linkages are mutated to create new
linkages. The mutation is performed on the encoding repre-
senting the linkage, and the linkage is then rebuilt from the
new encoding. The encoding is mutated by adding Gaussian
noise defined by N(0, σ). The noise is always added to the
values representing beam length, and added to the rest of the
values with a probability of 0.2. σ is self adaptive [24]. It is
encoded along with the genome as a floating point number,
and is mutated by adding Gaussian noise defined by N(0, 0.1),

1The code and videos of the walking robots can be found at https://github.
com/EmmaStensby/linkage-evolution

10 5 0 5 10

4

2

0

2

4

Step points Lift points Fig. 1 path

Fig. 4. The points used to measure the fitness in Fp (Equation 1), along with
the path from Figure 1 for reference. Fp for the path shown would be the
sum of the distances from each goal point to its closest cross.

with a probability of 0.2. After the noise has been added to
all values, including σ, they values are restricted back to the
range 0 to 1 using bounce back [25]. The number of nodes in
a linkage is constant, but how many of them are involved in
the moving mechanism varies.

D. Fitness functions

We compare two fitness functions for all our approaches.
For each of the two fitness function there is a separate
multiobjective variant that is used by NSGA-II. Both fitnesses
are derived from the foot path generated by the simulation.
The first fitness function, which we call Fp, measures how
close the foot path is to following a shape defined by a set
of points. The benefit of the first fitness function is that it
is easy to define if you know the path you want the leg to
follow beforehand. The second, which we call Fsl, measures
step length and leg lift. It is more difficult to design, but is
more general.

The points used in the first fitness function are placed in
a laying D shape. The shape has a flat bottom to encourage
contact between the end of the leg and the ground as the robot
takes a step, and a few points above the step line to encourage
lifting the leg between the steps. The fitness is calculated as

Fp = −
n∑

i=0

Di (1)

where n is the number of points in the set, and Di is the
distances from point i to the closest point in the path. In the
multiobjective variant for NSGA-II, the points are divided into
two sets, step points and lift points, and the fitness is measured
separately for each of the two. See Figure 4 for the positions
and division of the points.

The second fitness function measures the lift and step length
of the path. The step length, FS is measured as the length of
the sections of the path that are within a threshold of 5mm
from the bottom point in the path in the y-axis direction. The
step is only measured on the section of the path where the
foot is moving in the same x-axis direction as it is moving in
the bottom point of the path, to avoid the foot moving back
and forth along the bottom line. The lift, Fl is measured as the
maximum y-axis distance from a point on the bottom line to

https://github.com/EmmaStensby/linkage-evolution
https://github.com/EmmaStensby/linkage-evolution


a point above it where the foot is moving in the opposite
direction. An angle error, Fae is also added to discourage
having the foot of the leg upside down. The angle error is
an integer equal to the number of positions where the foot is
pointing upwards. These components are combined in Fsl as

Fsl = −0.8 ∗ Fs − 0.2 ∗ Fl + Fae (2)

The multiobjective variant of Fsl, used by NSGA-II, has the
two objectives Fms = −Fs + Fae and Fml = −Fl + Fae.

Many linkages will not be solvable for all crank angles.
Instead of removing the linkages that cannot turn a full
rotation, an error is calculated. The error is an integer equal to
the number of crank positions that do not satisfy the linkage
constraints. This error is added to all fitness functions to
discourage non-working linkages.

E. Evolutionary algorithms

The python library DEAP [26] was used to implement
the evolutionary approaches. All three approaches follow the
general structure: 1) Create children, 2) Evaluate linkages and
3) Select survivors, which is repeated until the trial terminates.
For all three approaches 5000 individuals were selected from
the population to be mutated to create the children. For the
standard evolutionary algorithm and NSGA-II this is the entire
population, but for MAP-Elites these are selected randomly
from the repertoire MAP-Elite keeps. The child linkages are
then evaluated, and survivors for the next iteration are selected.
The standard evolutionary algorithm uses tournament selection
with a tournament size of 3, and NSGA-II uses NSGA-II
selection [23]. The MAP-Elites selection is described below
along with the MAP-Elite repertoires. Parameters were chosen
through hand tuning.

F. MAP-Elites

In MAP-Elites the population is structured as a repertoire
of cells, where behaviour dimensions decide which cell each
solution is placed in. Only one individual is stored in each
cell, and the selection of the individual for the cell is elitist.

Four sets of behaviour dimensions are tested for the MAP-
Elites approach to get an idea of what properties of the
design is most useful to examine when prototyping. The first
set, which we call MAP-WH (MAP-Width-Height), has two
dimensions based on path shape, the width of the path along
the x-axis, and the height of the path along the y-axis.

The second set, which we call MAP-LIS (MAP-Lift-
Structure), has two dimensions, one based on linkage structure
and one based on path shape. The dimensions are the average
length of the beams in the linkage, and the lift of the path.
The lift of the path is calculated in the same way as it is for
the Fsl fitness function.

The third set, which we call MAP-ST (MAP-Structure),
has four dimensions based on the structure of the linkage,
the average length of the beams, the longest path between
a connection to the robot and the foot, the number of the
nodes that contribute to the function of the mechanism, and
the proportion of moving to stationary nodes.

The last set, which we call MAP-AU (MAP-Aurora), has
four dimensions that are automatically defined by an autoen-
coder [27] that is trained on path data throughout the trial,
using AURORA (AUtonomous RObots that Realize their Abil-
ities) [28]. As the autoencoder is trained on the paths found
it gradually produces a better representation of the search
space of possible paths. The autoencoder has 11 hidden lay-
ers with respectively 80-64-48-32-16-4-16-32-48-64-80 nodes.
The number of layers were chosen by gradually increasing
the size of the autoencoder until it could reproduce a few test
paths. The values in middle layer with 4 nodes determines
the placement of a path in the map. The autoencoder uses
the Adagrad [29] optimiser and mean absolute error loss.
The autoencoder is solely trained on paths with no error.
To initialise the map dimensions the autoencoder is trained
for 3000 epochs on the valid paths out of 5000 randomly
generated linkages. After this the autoencoder is trained for
1000 epochs every 10 iterations of the evolutionary algorithm,
on all valid paths currently in the population.

Both of the maps with two dimensions have a resolution of
100, while the maps with four dimensions have a resolution
of 10, giving a total of 10.000 cells for every map.

G. Physical robot

To be able to quickly test many different linkage configura-
tions, we create the linkages using LEGO Technic bricks. This
makes the linkages easily reconfigurable, and the length of the
beams in a mechanism can easily be modified by manually
switching out a brick. A limitation of using LEGO bricks is
that they come in specific sizes, so the evolved beam lengths
will need to be approximated by choosing the brick closest in
length.

The chassis and spacers for the robot were designed in
Fusion 360, and 3D-printed using a HP Jet Fusion 540 and
Ultimaker 3 Extended printers. The design consists of several
smaller parts that are held together with screws. Because the
plastic parts are flexible the robot had to be stiffened with an
attached metal rod while walking. The assembled robot can
be seen in Figure 2. The actuators used in this design are
Dynamixel MX28-AT motors.

When assembling an evolved linkage for the robot, several
design choices will have to be made by the builder. The
linkage is simulated in 2D with no collisions between beams.
When building, the beams that overlap will need to be placed
on different layers to avoid collision, while still making the
mechanism as stable as possible.

H. Prototyping

The prototyping will consist of building a robot, testing it on
two floors with different textures, and then modifying the robot
to try to improve its performance. We will do this once for each
approach we are comparing. We compare prototyping using
repertoires from the four MAP-Elites approaches evolved with
the Fp fitness function. The first floor is flat and slightly
slippery, while the second floor is covered by a thick carpet.
We expect the carpet floor to require more lift of the leg as it is



EA
NSGA2

MAP-WH
MAP-LIS

MAP-ST
MAP-AU

10

15

20

25

30
Fi

tn
es

s
F_p

EA
NSGA2

MAP-WH
MAP-LIS

MAP-ST
MAP-AU

35

30

25

20

15

F_sl

Fig. 5. Distribution of the best fitness found over the 10 trials of each approach.

Fig. 6. The repertoires generated by the MAP-Elites approaches. Each map shows the best fitness found in each cell of the repertoires over all 10 trials of
the approach. The color of each cell shows the fitness of the linkage.

not as flat. The floors can be seen in Figure 2. The prototyping
will follow these stages:

1) Build a robot based on the best fitness evolved linkage
2) Test the robot on both floors
3) Modify the robot using the evolved repertoires, and try

to improve the performance
4) Test the modified robot on both floors

In stage 3, to find a better design, the maps are downsampled
to a size of 5x5 cells, and maps with the paths shown in each
cell are created. The original maps contain 10000 cells, so the
downsampling ensures the maps are small enough for a human
to look through all the presented linkages. We then choose a
new linkage from the 5x5 map that has modifications that we
believe can improve the robot.

III. EXPERIMENTS AND RESULTS

A. 2D Simulation

We run 10 trials of each combination of the evolutionary
approaches and fitness functions. Each trial was run for 1 hour,

wall clock time, on 16 CPU’s. The average number of linkages
evaluated per trial was 726750.

In Figure 5 we see the best fitness found by each approach.
With the Fp fitness function the map approaches performed
better than the evolutionary algorithm, and slightly better than
NSGA-II. With Fsl all the approaches performed similarly.

The MAP-Elites repertoire maps in Figure 6 show how the
four MAP-Elites approaches explore the search space defined
by their dimensions. These maps show the best fitness found
in each cell over all 10 trials. The white spaces are areas of the
map that were not filled, mostly due to the dimensions in these
areas describing properties that are difficult or impossible to
combine in a single linkage.

In Figure 7 we see examples of paths generated in some
of the trials. The MAP-WH approach seem to have created
more diverse paths in combination with Fsl, while MAP-AU
seem to have created more diverse paths in combination with
Fp. With the exception of NSGA-II all approaches created
linkages that were too large to be successfully realised on the
robot when combined with Fsl.



Fig. 7. Examples of paths generated by some of the approaches. For MAP-
Elites the repertoires have been downsampled to a size of 5x5 cells, and the
path in each cell is shown. For NSGA-II the paths were sampled from the
final pareto front. For the standard evolutionary algorithm the five paths with
best fitness from the population are shown.

B. Transfer to reality

Figure 8 shows downsampled 5x5 maps. The maps are from
the four different MAP-Elites approaches using the Fp fitness
function. The map cells contain the best fitness path from
their region of the original maps. Each of these maps are
from a single run of the respective approach, and they were
chosen randomly from the 10 trials of each of the four tested
approaches. These four maps were used in the prototyping
process to choose the modified linkage.

Images of the eight tested robots are shown in Figure 9.
The second robot on the top row, and the first robot on the
second row, were incapable of walking due to their legs being
too long and frail to properly support the weight of the robot
frame. The rest of the robots were tested five times on each of
the two surfaces, with an evaluation time of 10 seconds each.
The distance walked in the direction the robot was facing at
the beginning of the trial was recorded by hand. The mean
distances the six working robots walked on the two floors are
summarised in Table I.

In the first trial, using the MAP-WH repertoires, the original
robot created from the best fitness solution walked over 70 cm
on the flat floor, in the direction it was facing at the beginning
of the trial. It was slightly slower on the carpeted floor. When
creating the modified linkage, a larger path with much higher
lift was chosen to attempt to increase the speed. However, this
linkage was not capable of producing a walking gait. There

TABLE I
THE DISTANCES EACH OF THE TESTED ROBOTS WALKED.

First robot Modified robot
Approach Flat floor Carpet Flat floor Carpet
MAP-WH 73.6 cm 63.6 cm Breaks (Too long)
MAP-LIS Breaks (Too long) 40.4 cm 48 cm
MAP-ST 39.4 cm 39.6 cm 77.6 cm 39 cm
MAP-AU 61.8 cm 59.4 cm 51 cm 50 cm

were not many viable paths to choose between these in the
MAP-WH map. This is because the width and height, which
are the dimensions in this map, is highly correlated with the
fitness, which aims for a path of a certain size. All the viable
solutions are therefore likely to be contained within one square
on the downsampled map.

In the second trial, using the MAP-LIS repertoires, the
original robot had too large legs to support the weight of the
robot frame. The modified path was chosen to have a smaller
linkage with shorter beams, and a slightly higher step height,
while still having many points along the bottom of the path.
This robot was not very quick, but was the only one that
walked faster on the carpet than the flat floor.

In the third trial, using the MAP-ST repertoires, the original
robot walked quite slowly. The original path had quite high
lift of the leg, and did not lose any speed on the carpet. The
modified linkage was chosen to have a slightly wider path. The
modified robot walked quicker on the flat floor, and maintained
the same speed as the original on the carpet.

In the fourth and final trial, using the MAP-AU repertoires,
the original robot moved quite fast, and similarly on both
floors. For the modified linkage we attempted to choose a path
that looked a bit flatter on the bottom, with the same amount
of leg lift. However, the modified robot moved slightly slower
than the original on both floors.

IV. DISCUSSION

In this study we compared a standard evolutionary algo-
rithm, NSGA-II and MAP-Elites for generating linkage based
leg mechanisms. The standard evolutionary algorithm seemed
to converge to a local optima with the Fp fitness function,
showing that some diversity preservation is beneficial when
searching this space. NSGA-II, as expected, produced several
linkages representing the tradeoff between its two fitness
objectives.

The four MAP-Elites approaches filled the repertoires quite
differently, showing the differences between the behavioral
dimensions. We qualitatively analyzed the linkages generated
by looking at how path shapes were spread throughout down-
sampled maps. MAP-AU produced diverse linkages showing
that automatically defining the dimensions with an autoen-
coder is a viable strategy for linkage generation. The benefit
of having handcrafted behaviour dimensions is that it can
make exploring the repertoires a lot easier, as you know what
properties will change when you move through the map. The
MAP-WH dimensions based solely on path shape were likely
a bit too correlated to the fitness functions, and MAP-ST based



Fig. 8. Downsampled maps showing the type of linkage paths found in different regions of the maps. The color of the paths indicates their fitness. The
number in the bottom right corner of each cell indicates the relative sizes of the paths, as the paths have been scaled to fit their cell. The four grayed out
cells show the best fitness paths, and the four checkerboard cells show the paths chosen for the modified robots, together making up the eight linkages tested
on the physical robot.

Fig. 9. The eight robots tested. The top row contains the original robots created based on the best fitness linkage from each map. The bottom row contains
the modified robots based on the downsampled repertoires.

solely on linkage structure was difficult to define in a way that
filled the entire map. The MAP-LIS which had a combination
of path shape and linkage structure as its dimensions seemed
the most promising.

Out of the two fitness functions we compared Fp produced
the paths that were most viable to recreate on the physical
robot. It was intuitive how to control the solutions found using
Fp. However, to create the set of points for Fp you need to
know exactly what foot path you are looking for. Fsl, which
rewards step length and leg lift, could in theory lead to more
diverse paths, since it allows more room for how to achieve
these properties. In our experiments though, the paths evolved
with Fsl quickly exploited size to create a big step length,
and thus were not easily recreatable on the physical robot.
Even though the Fp fitness function is less general than Fsl,
the combination of the MAP-Elites approaches and Fp was
capable of producing diverse paths.

Our study into MAP-Elites as a design tool for linkage
based robots provides an initial investigation with eight tested
robots. More thorough physical experiments will be needed
to generalize our findings. In addition we likely got better at

building the linkages throughout the experiments, which might
have affected the results. As the fitness of the modified robots
did not improve in any significant way we cannot determine
which repertoire produced robots with the highest fitness.
However, some repertoires were more user friendly than the
others during the prototyping process. The repertoires of MAP-
LIS and MAP-AU were the easiest to use as these had a larger
diversity of paths to choose from. The MAP-LIS repertoire
was especially easy to choose a modified path from, as the
length of the linkage could be inferred from the dimensions
of the map. Large linkages did not produce a robot capable of
locomotion, and with average beam length as a dimension it
was possible to compare mechanisms of different sizes in the
prototyping stage.

The linkages were simulated in 2D without collisions be-
tween beams. When assembling a robot, we needed to choose
which layer to place the beams on, and how to connect them,
while maintaining a stable structure. This was difficult for
some linkages, especially because the mechanisms became
frail when the legs were long. The selection of how to connect
the beams likely had a substantial effect on the speed of the



robots.
In future work it could be interesting to use sturdier mate-

rials to create the linkages. This would likely have enabled
us to create even faster robots with longer legs, although
it would increase the construction time of each robot. To
cope with the added construction time, and to make the
prototyping experiments fairer, the robots could be built by
different people. Another direction that could be explored is to
offload even more of the design to the computer by simulating
the linkages in 3D on a simulated robot. In this way the
assembling of the linkages and the forces between the beams
could also be tested before realising a physical robot. This
could also increase the fairness of the linkage comparisons, as
it would remove human errors in selecting how to assemble
the linkage.

V. CONCLUSION

In this paper we compared several evolutionary approaches
for designing mechanical linkages, in an attempt to find the
most efficient method for evolving mechanical leg mechanisms
for a hexapod robot. We then demonstrate how evolved
repertoires of mechanical linkages can be used as part of a
prototyping process with a physical linkage based hexapod
robot platform, by testing eight evolved linkages in the real
world.

We found that the quality-diversity and multi-objective
approaches were more efficient than the standard evolutionary
algorithm at creating a linkage that moves through a set of
points, and that the MAP-Elites approach with linkage size
as a behavioural dimension was the most useful during the
prototyping. We conclude that quality-diversity seems like a
promising approach for linkage generation for robotics, and
that for prototyping purposes behaviour dimensions reflecting
linkage properties that are likely to be changed during the
prototyping process are the most useful.

ACKNOWLEDGMENTS

This work was partially supported by the Research Council
of Norway through its Centres of Excellence scheme, project
number 262762. The simulations were performed on resources
provided by UNINETT Sigma2—the National Infrastructure
for High Performance Computing and Data Storage in Norway.

REFERENCES

[1] T. F. Nygaard, J. Nordmoen, K. O. Ellefsen, C. P. Martin, J. Torresen,
and K. Glette, “Experiences from real-world evolution with dyret:
Dynamic robot for embodied testing,” in Symposium of the Norwegian
AI Society. Springer, 2019, pp. 58–68.

[2] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary Computation, vol. 1, no. 1,
pp. 1–23, 1993.

[3] S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois, “Evolutionary
robotics: Exploring new horizons,” in New Horizons in Evolutionary
Robotics. Springer, 2011, pp. 3–25.

[4] G. S. Hornby, H. Lipson, and J. B. Pollack, “Evolution of generative
design systems for modular physical robots,” in International Conference
on Robotics and Automation, ICRA. IEEE, 2001, pp. 4146–4151.

[5] J. Nordmoen, F. Veenstra, K. O. Ellefsen, and K. Glette, “Quality and
diversity in evolutionary modular robotics,” in IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, 2020, pp. 2109–2116.

[6] K. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret,
“Quality-diversity optimization: a novel branch of stochastic optimiza-
tion,” in Black Box Optimization, Machine Learning, and No-Free Lunch
Theorems. Springer, 2021, pp. 109–135.

[7] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary Computation, vol. 19, no. 2,
pp. 189–223, 2011.

[8] E. Zardini, D. Zappetti, D. Zambrano, G. Iacca, and D. Floreano,
“Seeking quality diversity in evolutionary co-design of morphology and
control of soft tensegrity modular robots,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2021, pp. 189–197.

[9] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Conference on Genetic
and Evolutionary Computation (GECCO). ACM, 2011, p. 211–218.

[10] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[11] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-efficient design explo-
ration through surrogate-assisted illumination,” Evolutionary computa-
tion, vol. 26, no. 3, pp. 381–410, 2018.

[12] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems,” IEEE
Robotics & Automation Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[13] J. Nordmoen, F. Veenstra, K. O. Ellefsen, and K. Glette, “MAP-Elites
enables powerful stepping stones and diversity for modular robotics,”
Frontiers in Robotics and AI, vol. 8, p. 56, 2021.

[14] D. M. Bossens, J.-B. Mouret, and D. Tarapore, “Learning behaviour-
performance maps with meta-evolution,” in Genetic and Evolutionary
Computation Conference (GECCO). ACM, 2020, pp. 49–57.

[15] A. Hagg, A. Asteroth, and T. Bäck, “Prototype discovery using quality-
diversity,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2018, pp. 500–511.

[16] A. Lieutier and J.-F. Rameau, “Mechanical linkage design and NP-
hardness,” Mechanism and Machine Theory, vol. 82, pp. 97–114, 2014.

[17] J. Cabrera, A. Simon, and M. Prado, “Optimal synthesis of mechanisms
with genetic algorithms,” Mechanism and Machine Theory, vol. 37,
no. 10, pp. 1165–1177, 2002.

[18] N. N. Romero, A. Campos, D. Martins, and R. S. Vieira, “A new
approach for the optimal synthesis of four-bar path generator linkages,”
SN Applied Sciences, vol. 1, no. 11, pp. 1–8, 2019.

[19] R. R. Bulatović and S. R. Djordjević, “Optimal synthesis of a path gen-
erator six-bar linkage,” Journal of mechanical science and technology,
vol. 26, no. 12, pp. 4027–4040, 2012.

[20] S. G. Desai, A. R. Annigeri, and A. TimmanaGouda, “Analysis of a
new single degree-of-freedom eight link leg mechanism for walking
machine,” Mechanism and Machine Theory, vol. 140, pp. 747–764,
2019.

[21] T. Jansen, The great pretender. 010 Publishers, 2007.
[22] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, “Exploration of adaptive

gait patterns with a reconfigurable linkage mechanism,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2013, pp.
4661–4668.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[24] J. Teo, “Self-adaptive mutation for enhancing evolutionary search in real-
coded genetic algorithms,” in International Conference on Computing
& Informatics, 2006, pp. 1–6.

[25] J. Nordmoen, T. F. Nygaard, E. Samuelsen, and K. Glette, “On restrict-
ing real-valued genotypes in evolutionary algorithms,” in International
Conference on the Applications of Evolutionary Computation (Part of
EvoStar). Springer, 2021, pp. 3–16.

[26] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012.

[27] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[28] A. Cully, “Autonomous skill discovery with quality-diversity and unsu-
pervised descriptors,” in Genetic and Evolutionary Computation Con-
ference (GECCO). ACM, 2019, p. 81–89.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.


	I Introduction
	II Methods
	II-A 2D linkage simulator
	II-B Linkage encoding
	II-C Mutation
	II-D Fitness functions
	II-E Evolutionary algorithms
	II-F MAP-Elites
	II-G Physical robot
	II-H Prototyping

	III Experiments and Results
	III-A 2D Simulation
	III-B Transfer to reality

	IV Discussion
	V Conclusion
	References

