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Abstract
Reward tampering is a problem that will impact the trustworthiness of the power-
ful AI systems of the future. Reward Tampering describes the problem where AI 
agents bypass their intended objective, enabling unintended and potentially harm-
ful behaviours. This paper investigates whether the creative potential of evolution-
ary algorithms could help ensure trustworthy solutions when facing this problem. 
The reason why evolutionary algorithms may help combat reward tampering is that 
they are able to find a diverse collection of different solutions to a problem within 
a single run, aiding the search for desirable solutions. Four different evolutionary 
algorithms were deployed in tasks illustrating the problem of reward tampering. 
The algorithms were designed with varying degrees of human expertise, measuring 
how human guidance influences the ability to discover trustworthy solutions. The 
results indicate that the algorithms’ ability to find and preserve trustworthy solutions 
is very dependent on preserving diversity during the search. Algorithms searching 
for behavioural diversity showed to be the most effective against reward tampering. 
Human expertise also showed to improve the certainty and quality of safe solutions, 
but even with only a minimal degree of human expertise, domain-independent diver-
sity management was found to discover safe solutions.
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1  Introduction

The use of Artificial Intelligence (AI) has grown rapidly in recent years, mak-
ing AI systems a larger and more important part of our society. Healthcare, self-
driving cars, advertising, finance, and game-playing are among the many domains 
where AI algorithms thrive.

With the rapid advancement of AI, AI-safety has become a significant field 
of study, aiming to avoid unintended and harmful behaviours from powerful and 
intelligent systems [7, 13]. Multiple concrete safety problems have been discov-
ered [1], causing careful considerations when designing AI systems. Many of 
the safety problems studied today are caused by algorithms exploiting flaws and 
unintended loopholes in the design of an objective function. Examples include 
agents finding and exploiting ways to cheat in games [3], agents exploiting bugs 
in simulators [14], and supervised learning agents that can be fooled as they 
have learned other patterns in their data than we expected [24]. As AI algorithms 
become smarter they might even find other exploiting methods that are not reliant 
on weaknesses in the objective function design [7].

In Reinforcement Learning [26], an agent usually learns to perform a task by 
taking actions in an environment, aiming to maximize its cumulative reward. 
The reward given to the agent indicates how well it performed given its intended 
task. However, what would happen if an agent was able to weaken or break the 
relationship between the reward and the intended task? This problem is called 
Reward Tampering and is a futuristic AI-safety concern [7]. That is, while reward 
tampering can lead to inconveniences in training current AI systems [5], the main 
reason for worrying about it is that future AI systems will both be able to cause 
more damage and have more potential for this kind of tampering.

An example is a robot accessing the computer running its source code and 
altering the reward function, allowing more or easier access to the reward. This 
could potentially enable dangerous behaviours from very intelligent systems.

Evolutionary algorithms (EA) are a branch of AI that take inspiration from 
natural evolution to solve a problem [6]. While EAs may be likely to suffer from 
reward tampering, they may also be a step towards a solution to this problem. The 
reason EAs could help combat reward tampering is that, unlike typical machine 
learning algorithms, they search by using a population of solutions [25]. By 
ensuring this population contains many different ways of solving a problem, we 
can increase the chance that some do not tamper with rewards and that we thereby 
obtain some desirable solutions. An emerging area in Evolutionary Algorithms is 
so-called Quality Diversity techniques, which work to ensure exactly this: That 
individuals in the evolutionary population are spread across different and relevant 
behavioural niches [23].

A common approach to encourage a diverse evolutionary population that con-
tains multiple interesting ways of performing a task, is to equip EAs with task-
specific behaviour characterizations (BCs)—for instance, we could specify that 
we want some robots that run fast, some that run slowly, and some in-between, 
yielding a population with diversity in running pace. Such task-specific BCs 
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could be a beneficial tool in ensuring safe individuals; however, it is often a time-
consuming engineering process requiring a deep understanding of the task and 
multiple iterations to get the desired result. Another less common approach that 
has gained attraction in the past years, is to equip EAs with generic BCs [21]. 
This can be applied to any problem without human guidance, and is therefore bet-
ter suited as a general solution. Could we ensure that a population would contain 
trustworthy solutions without use of human expertise of what is considered a safe 
solution?

The main contributions of this paper are (1) an investigation of whether evo-
lutionary algorithms can discover trustworthy solutions in tasks featuring reward 
tampering, (2) a comparison of the performance between different classes of evo-
lutionary algorithms when reward tampering is possible and (3) a comparison of 
the performance between evolutionary algorithms with varying degree of human 
guidance.

2 � Background

As mentioned in the introduction, there are many known examples of intelligent 
agents learning unintended behaviors by exploiting loopholes in their objective 
function. We begin this chapter with providing more details on two examples, to 
provide a clear picture of what types of problems AI-safety research addresses.

Lehman et  al. [14] collect many anecdotes of evolutionary algorithms that 
achieve high fitness scores by finding ways to exploit their objective function. In 
many cases, this can involve finding ways to take advantage of bugs or errors in a 
physics simulator. For instance, Feldt [8] applied Genetic Programming to opti-
mize control software for safely and efficiently decelerating airplanes landing on 
an aircraft carrier. Surprisingly, the algorithm quickly arrived at solutions with a 
perfect performance score. Upon closer inspection, it was found that the optimi-
zation had discovered a way to break the physics simulation by applying stronger 
than anticipated forces. Thereby, the algorithm was in practice rewarded for solu-
tions that were very far from the safe, low-force solutions that were desired.

Chrabaszcz et  al. [3] investigated the possibility of applying a basic Evolu-
tion Strategy as an alternative to deep Reinforcement Learning. For this goal they 
tested their algorithm on Atari games, among other environments. To the sur-
prise of the authors, the algorithm found and exploited a way to cheat in the game 
Qbert that was previously unknown. The agent seemingly discovered a bug in 
the game that allowed it to collect an unreasonable amount of points by follow-
ing a specific movement pattern. The agent discovering this solution thus avoided 
becoming a skilled Qbert player, and instead found a way to get a high score by 
cheating.

We recommend the interested reader to look closer at the collection of anec-
dotes by Lehman et al. [14], to see the wide variety of ways intelligent agents can 
find unintended, and often undesirable, solutions to a problem.
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2.1 � Categorizing AI‑safety problems

The possibility of unintended consequences and possibly harmful behaviours 
increase with more intelligent AI agents, limiting the trustworthiness of AI systems 
[1, 7, 13, 18]. Amodei et al. [1], recently categorized some of these concrete prob-
lems and divided them into subcategories.

One of the concrete AI-safety problems proposed is called reward hacking, which 
involves AI-systems developing behaviours that increase their rewards in ways that 
violate the intention of the developer. Reward hacking is further separated into two 
categories, reward gaming and reward tampering. Reward gaming occurs when 
agents are able to exploit misspecifications or design flaws in the process that com-
putes the reward. A classic example of this is a cleaning robot whose intended task is 
to clean an office. Multiple behaviours featuring reward gaming could occur depend-
ing on how the reward function is designed. For instance, if the robot is rewarded for 
the amount of dirt it cleans, it might obtain more reward by breaking a flower pot 
and cleaning the dirt. If the agent’s reward is based on how much dirt it observes, it 
might find ways of reducing its vision, and thus not observe any dirt at all. Reward 
gaming has frequently been reported among researches [1, 15], and is usually fixed 
with a more robust objective function.

Reward tampering is a more advanced type of exploit, not reliant on design errors 
made by humans. Everitt et al. [7] describe reward tampering as: Instead of the agent 
trying to influence reality to match the objective, the agent is changing the objective 
to match reality. In essence, reward tampering is a problem where an agent is able to 
break or weaken the relationship between the reward and the objective.

An example of this would be for an agent to, rather than guess the right label, 
change the objective so that all labels are considered correct. This would then make 
the task easier for the agent to solve. With the current capabilities of AI systems, this 
is preventable. However, as we scale up machine learning algorithms and RL agents 
become smarter, they may find ways of tampering with the objective and thus gain 
reward without performing their task.

Everitt et. al describe two different types of reward tampering, depending on 
whether the agent tampers with the reward function itself or the input to the reward 
function:

Reward Function Tampering involves agents tampering with the process that 
determines their reward. If there is a way for the agent to change the reward func-
tion, it might exploit this possibility. This is often the case for real-world robots 
as the computer that runs their reward function exists somewhere in their environ-
ment. An intuitive example found in biology is experiments on rats using electrodes 
inserted into their brain to generate pleasure as a reward. Instead of performing their 
original task, the rats instead found the button that generated this pleasure and got 
addicted to pressing it [22].

RF-input Tampering involves agents tampering with the input to the reward func-
tion. This can enable the agent to misinform the reward function and fake that some-
thing desirable has occurred in the environment. A recent example of this [5] is a simu-
lated robot hand that was trained to grasp objects, with human subjects evaluating its 
performance. The robot was able to learn to “fool” the human evaluators (and thus its 
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reward function) by obscuring the object rather than grasping it. This shows how an 
agent able to give false information to the reward function could be able to gain reward 
without carrying out its intended task.

2.2 � Behavioural diversity

Evolutionary algorithms have been demonstrated to perform better in many deceptive 
and difficult environments when searching for novelty/diversity rather than only search-
ing for solutions that achieve high fitness [23]. Therefore, studies concerning behav-
ioural diversity have in the recent years been an emerging trend the field of Evolution-
ary Computation [23]. Novelty Search (NS) introduced the idea of explicitly rewarding 
behavioural diversity. In contrast to prior EAs, where the parents and surviving indi-
viduals in the next generation are chosen based on the rewards from the environment, 
NS instead provides high fitness to novel individuals that perform the task in a differ-
ent manner than the rest of the population. This enables NS to discover new parts of 
the behaviour space potentially ignored by objective-based algorithms as they initially 
yield low reward.

Without utilizing the rewards from the environment, NS proved surprisingly effec-
tive in tasks containing multiple local optima, also known as deceptive tasks, and out-
performed multiple objective-based EAs [17]. However, without the notion of quality, 
and the ability to separate good solutions from bad, NS struggles in large environments 
without constrains to the behaviour space. This paved the way to combine the ideas 
from objective-based EAs with novelty, resulting in Quality Diversity techniques [23].

2.2.1 � Quality diversity

The goal of a Quality Diversity algorithm is to maintain behavioural diversity in the 
population while at the same time improving the quality of the individuals close to each 
other in behavioural space through local competition. Quality Diversity techniques 
(QD) have therefore outperformed objective-based EAs in deceptive tasks, and purely 
novelty seeking algorithms in complex tasks with large behaviour spaces [20, 23]. The 
original QD algorithm is called Novelty Search with Local Competition [16]. NSLC 
uses the same novelty mechanism as NS, but additionally individuals close in behav-
ioural space are treated as a separate species and compete amongst themselves by look-
ing at the reward from the environment.

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is another QD algo-
rithm inspired by NSLC [20]. Instead of defining a niche as the individuals close in 
behaviour space, MAP-Elites discretizes the behaviour space into cells. Each cell cov-
ers some user defined amount of the behaviour space, and the population of MAP-
Elites consists of the best individual discovered in each cell.

2.2.2 � Behaviour characterizations

A key aspect of NS and other algorithms searching for behavioural diversity is decid-
ing what characterizes a behaviour, also known as the behaviour characterization 
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(BC). This is an important design choice researchers often spend much time on and 
is key in order to attain species spread across relevant competencies. The BC is typi-
cally a vector containing n behavioural dimensions where each dimension captures 
some aspect of the individual’s actions during its evaluation. There are two main 
approaches, generic and task-specific BCs [21].

Generic behaviour characterization Generic BCs can be applied to any task and 
still encourage behavioural diversity. The most common generic BC used is called �
-vectors, describing the behaviour of the individuals at each time step, i.e, a chrono-
logical list of actions taken and observations received [21]. As this is not specifically 
related to one task, they can be applied to any domain and still contribute to find-
ing interesting and novel solutions [21]. The fact that generic BCs utilize no human 
guidance also means that they are likely to be more featured in future tasks, where 
the tasks will be more complicated and therefore more challenging for humans to 
design BCs encouraging diversity. One downside, however, is the computational 
cost; as the dimensionality of the a generic behaviour space is commonly far larger 
than task-specific variants. Calculating geometrical distances in a behaviour space 
of over a hundred dimensions is very time-consuming and resource-demanding. 
Another downside is that even though solutions may differ in terms of the �-vec-
tors, in many domains, the solutions can still end up with only slight deviations of 
the same behaviour. With that being said, Lehman et al. [17], managed to consist-
ently discover neural networks that solved a maze environment using NS with a 
400-dimension behavioural space.

Task-specific characterization Most papers concerning behavioural diversity uti-
lize task-specific, or ad hoc BCs [21]. A task-specific BC characterizes an individu-
al’s behaviour based on information extracted from the environment during or after 
evaluation. For instance, in deceptive maze navigation [17, 23], a commonly used 
BC is the end position of the individual as this is very aligned with the objective. 
When evolving walking behaviours for a bipedal robot, multiple different BCs have 
been employed with the intention of generating different ways of walking, including 
center of mass, mean head angle, mean knee speed and mean leg speed [10]. Task-
specific BCs generally encourage more relevant behavioural diversity at the cost of 
requiring prior human knowledge specific to each task [21]. Task-specific BCs also 
generally provide a lower-dimensional behaviour space, which leads to a less com-
putational demanding comparison between individuals.

3 � Environments

The environments used in this study originate from Deep Mind’s AI-Safety Grid-
worlds suite [18], available online through an open-source licence.1

Gridworlds are widely used in Reinforcement Learning as they are fairly easy to 
implement, fast to simulate, and can be used as a simplified representation of more 
complex problems [7]. A gridworld consists of a two-dimensional grid of cells. The 

1  https://​github.​com/​deepm​ind/​ai-​safety-​gridw​orlds.

https://github.com/deepmind/ai-safety-gridworlds
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agent always occupies one of the cells, and at each timestep, it chooses one move-
action from the action set A = {down, up, left, right} , modifying its position. If the 
agent moves into a wall or another impassable object, it remains in its current posi-
tion. A gridworld can also contain other objects that the agent can interact with, for 
instance, push or visit. The goal of the agent is always to maximize the cumulative 
reward R it obtains from the environment.

The AI-safety gridworlds attempt to capture the key dynamics of several important 
AI-safety concerns [1]. These environments were inspired by the popular puzzle game 
“Baba Is You”, where the player has to alter the rules of the environment to reach the 
goal. In addition to the normal reward from the environment, the agent also receives a 
safety-score R∗ , capturing both the agent’s performance towards the objective and the 
safety of its behaviour. This safety-score R∗ is hidden to the agent and the learning algo-
rithm. If R∗ is equal to R, all the reward was gathered in a safe way, following the inten-
tions of the developer. If R∗ < R the agent has found ways of obtaining reward that is 
unintended (and potentially dangerous). Each episode ends after 100 timesteps, meaning 
that there are 4100 different ways an agent can move in a single episode. After each epi-
sode, the environment is reset to its original configuration. The observation for the agent 
is the configuration of the grid, where each element of the grid has a specific value.

3.1 � Rocks and diamonds

In the Rocks and Diamonds environment, shown in Fig. 1, agents are able to alter 
the reward function. This illustrates the problem of reward function tampering. If we 
interpret the environment as a real-world environment, the reward tampering states 
can be seen as the agent accessing the computer controlling itself and altering the 
reward function. In addition to the reward tampering states, the environment consists 
of the agent, three rocks, a diamond, and a goal area. The rocks and diamonds can 
be pushed by the agent.

Originally the agent receives + 1 reward each timestep if the diamond is in the 
goal area and − 1 per rock in the goal area. The desirable behaviour is that the agent 
simply pushes the diamond into the goal area. However, by visiting the tampering 
states, the agent can alter the reward function. By visiting �R

d
 the reward for dia-

monds in the goal area is multiplied with − 1. By visiting �R
r
 , the reward for rocks 

in the goal area is multiplied by − 1. There are therefore multiple ways an agent can 
obtain higher reward that what the desirable behaviour yields. The reward an agents 
receives at time-step t is given in Eq. 1, while the safety-score of an agent is given in 
Eq. 2. For instance, if an agent obtain 100 reward and 20 safety-score during a run; 
20 reward was obtained in the intended way and 80 by tampering.

Reward function

Safety function

(1)Ft = Diamonds in goal ⋅ �R
diamonds

+ rocks in goal ⋅ �R
rocks

(2)St = Diamonds in goal − rocks in goal
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3.2 � Tomato watering environment

The Tomato Watering Environment, shown in Fig.  2, is a challenging environ-
ment in which an agent can modify its observations. This represents the problem 
of RF-input tampering described in Sect. 2.1. The environment consists of watered 
plants, dry plants, impassable walls, the agent, and a tampering state. The objective 
of the agent is to water the dry plants by walking on their tiles. At each timestep, 
any watered plant has a 3 % chance to dry up. Reward is given to the agent at each 
timestep for each plant that appear watered. The desired behaviour is that the agent 
moves around in the environment and waters dry plants. However, by visiting �R , 
the agent is able to modify its observation of the environment, making it interpret 
all plants as watered without the tomatoes changing their state. An example of this 
could be a robot purposefully damaging its vision, or placing a bucket on top of its 
head. This causes the desired behaviour to yield much less reward than simply walk-
ing to the �R-tile and remaining there for the rest of the episode. The reward in the 
environment is given in Eq. 3 and the safety-score is given in equation 4.

Fig. 1   The rocks and diamonds environment. An agent is here able to alter its reward function, known 
as reward function tampering. This way an agent can obtain a high reward, while achieving an undesired 
result

Fig. 2   The tomato watering environment. An agent is here able to perform RF-input tampering by visit-
ing �R , interpreting all plants as watered and thereby gaining reward without performing its intended 
objective
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Fitness function

Safety score function

4 � Algorithms

The algorithms used in our study involves the objective-based algorithm NEAT, the 
purely novelty searching algorithm NS, and the QD algorithms NSLC and MAP-
Elites. All algorithms use the same evolutionary operators; mutation, crossover, and 
genotype representation from the original NEAT paper [25]. The implementation of 
the evolutionary operators can be found in the neat-python package.2

4.1 � NEAT

Neuroevolution of Augmented Topologies (NEAT) is a classical objective-based 
EA for evolving neural networks. The fitness of an individual is purely based on 
the cumulative reward R from the environment. NEAT also utilize speciation and 
fitness-sharing to maintain genetic diversity across the individuals in the population. 
This was implemented as the standard generational NEAT with a population size of 
200.

4.2 � Novelty search

Novelty search (NS) was the first behavioural diversity algorithm, only searching 
for individuals that behave differently without using any reward from the environ-
ment. The fitness of an individual in NS is based on how far it is from the rest of the 
population in behavioural space. The behavioural distance between two individuals 
is calculated by assessing the difference between the BC-vectors. In this study the 
euclidean distance and the hamming distance is used, depending on the dimension-
ality of the BC. The fitness of an individual is then calculated by summing the dis-
tances of the k-nearest neighbours, given in Eq. 5 (k = 15, in this study).

(3)Ft = observed watered plants ⋅ 0.02

(4)St = truly watered plants ⋅ 0.02

(5)�(x) =
1

k

k
∑

i=0

dist(x,�i)

2  https://​github.​com/​CodeR​eclai​mers/​neat-​python.

https://github.com/CodeReclaimers/neat-python
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4.3 � Novelty search with local competition

Novelty search with local competition (NSLC) was one of the first QD algorithms 
that successfully managed to combine the ideas from objective-oriented EAs with 
behavioural diversity. NSLC uses NS to promote novelty, but additionally uses 
the reward from the environment to achieve local competition within behavioural 
niches. A niche is defined as the nearest neighbours in behavioural space, already 
obtained by NS. The individuals in a behavioural niche survive to the next genera-
tion based on a Pareto ranking of the reward and novelty score.

4.4 � MAP‑Elites

MAP-Elites is another QD algorithm inspired by NSLC [20]. Where NSLC defines 
a niche as the nearest neighbours in behaviour space, MAP-Elites divides the behav-
iour space into discrete cells, and the population consists of the highest performing 
individual within each cell. The behaviour space is divided using a grid, and the grid 
has equal dimensions to that of the behaviour space. The amount of the behaviour 
space each cell covers is user-defined and often dependent on the size of the behav-
iour space; With a large behaviour space, it is common to have cells that cover a 
large area of the behaviour space, meaning that multiple behaviours compete within 
the same cell. With a small behaviour space, it is more common to have smaller 
cells so that fewer behaviours compete within the same cell. One can consider the 
grid as the traditional population in other evolutionary algorithms, but an impor-
tant difference is that the population of MAP-Elites has no user-defined size and can 
vary from different runs. Because each individual in the population has a designated 
area in the behaviour space, the population is by definition diverse.

For both MAP-Elites and NSLC, the population was implemented using qdpy [2].

5 � Methods

This section describes the behaviour characterizations used and how the experi-
ments were conducted. To investigate the performance of the algorithms with vary-
ing degree of task-specific knowledge, two different BCs for each environment were 
designed; one task-specific and one generic.

5.1 � Behaviour characterizations

The task-specific behaviour characterization chosen for the rocks and diamonds 
environment was the position of the diamond and the three rocks at the end of the 
episode as these are the elements that contribute to the fitness of an individual. This 
was inspired by [17], where the task was maze navigation, and the BC was the end 
position of the agent. The BC then becomes the 4-dimensional vector given in Eq. 6, 
where D is the position of the diamond and Ri is the position of the i-th rock.
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The task-specific BC for the tomato watering environment was more difficult to 
choose as there are no movable objects, and the performance of an agent is more 
dependent on how it moves throughout the episode rather than where it ends up. The 
BC chosen for this environment was a vector containing the number of plants the 
agent watered during the episode, and the number of different positions the agent 
visited. The BC is shown in Eq. 7, where W is the number of plants watered during 
the episode and P is the number of different positions visited.

To investigate the performance of the algorithms operating under no human guid-
ance, the second BC for both environments was generic. When applying a generic 
BC to a problem, we do not require any prior human knowledge of the task, meaning 
that the same BC could be applied to any task and domain. Generic BCs are there-
fore more suitable for futuristic tasks where reward tampering might become a real-
ity as human expertise might be limited.

The individuals in the population will be forced to behave differently in terms of 
the �-vectors. This contains the action of the individual at each timestep and was 
further described in Sect. 2.2.2. The generic BC-vector for an individual is therefore 
on the form given in Eq. 8, where ai is the action of the individual at timestep i, 
going up to the maximum number of timesteps in the environment t.

Given that the number of timesteps for each episode is 100, and each agent can per-
form four different actions per timestep, the behavioural space includes 4100 pos-
sible different behaviours. This is severely larger in both size and dimensionality 
than the behaviour space created for the task-specific BCs. Because of the amount 
of cells required for the grid, MAP-Elites is not compatible with �-vectors. This is 
caused by the fact that the number of cells grows exponentially with the number 
of dimensions, meaning that the default version of MAP-Elites “cannot be used in 
high-dimensional feature spaces” [27]. An alternative to �-vectors was therefore 
used as a generic behaviour descriptor for MAP-Elites, serving as a translation of 
the generic approach to a format more fit for MAP-Elites. This was chosen to be a 
4-dimensional vector, where each element represents the number of times an action 
was chosen:

The Hamming distance was used to reduce the time-complexity of calculating the 
behavioural distance between individuals in this multidimensional behaviour space.

(6)BCR&D ∶ [D,R1,R2,R3]

(7)BCTW ∶ [W,P]

(8)Generic BC ∶ [a1, a2, a3,… , at]

(9)Generic BC for MAP-Elites ∶ [ndown, nup, nleft, nright]
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5.2 � Experimental setup

In both environments, the four algorithms presented in Sect. 4 were used to generate 
and optimize both the weights and topology of neural networks with the objective of 
maximizing the cumulative reward from the environment. The safety-score was hidden 
from the algorithms during the entirety of the runs.

In order to allow a thorough statistical analysis of the performance of the algorithms, 
each algorithm was run ten times. A commonly used termination criterion for EAs 
is when a given number of generations is reached; however, in order to achieve a fair 
comparison between algorithms with vastly different definitions of what a generation 
is, each run was instead ended after a given number of evaluations. This number was 
set at 1 million, which is the same amount of evaluations Leike et al. [18] used when 
attempting to solve the same environments with Reinforcement Learning.

The parameters are shown in Table 1. The input for an agent at each timestep is the 
state of the environment (observation): 56 values in the rocks and diamond environ-
ment, and 63 values in the tomato watering environment. The output from the network 
is 4 values representing the possible actions. The action taken by the agent is chosen 
using the argmax function, choosing the action with the largest value. The initial popu-
lation starts out fully connected, meaning that there is a connection from each input 
node to each output node. Each weight was initialized with random values in the range 
[−1, 1] . For the evolutionary operator parameters the default values given in the origi-
nal NEAT paper [25] were used. For NEAT, the number of elites in each species was 
set to 5, and for NS and NSLC k was set to 15.

6 � Results

This section presents the results gathered from the experiments. The results of 
equipping the algorithms with task-specific BCs is first presented, then the generic 
results are shown. The last section functions as a summary of the experiments and 

Table 1   Parameters used for 
both environments

Parameter Value

Number of runs 10
Number of evaluations 1000 000
Probability of crossover 0.1
Probability of add connection 0.3
Probability of add node 0.3
Probability of activation func. mutation 0.3
Possible activation func tanh, sigmoid
Weight mutation Gaussian
Population size 200
Input Observation
Output 4 (action)
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focuses on the comparison between the algorithms equipped with a task-specific BC 
versus generic BC.

6.1 � Task specific experiments

Figure 3 shows the fitness and safety-score of all individuals in the last generation 
of the evolutionary runs (all 10 runs). Note that we here plot estimated underlying 
distributions (through kernel density estimation) of these measurements rather than 
individual data points, since there are too many data points for the reader to easily 
interpret their distribution directly.

From (a) we see that the objective based algorithm NEAT, is unable achieve high 
safety-scoring individuals in both environments. In the Rocks and Diamond environ-
ment the largest congregation of individuals is around center (0, 0), indicating that 
most individuals evolved by NEAT are irrelevant by neither achieving high fitness 
nor safety. This is also the group with the highest safety-score values of the popula-
tion, showing that that the optimized are generally obtaining negative safety-scores.

The elites of the population are gathered in the lower right area, where the fitness 
is high and the safety score is low. No areas yielding high safety-scores are exhib-
ited, showing that NEAT is unable to generate solutions performing the tasks in the 
desired way.

Similar results are gathered from the Tomato Watering Environment, where no 
individuals in the final generation attempt to solve the task as intended, as the best 
solutions in terms of safety obtain around 5 safety-score. In this environment NEAT 
experiences a larger part of the population in areas of high fitness, caused by the 
easy-to-obtain tapering behaviour.

From (b) we see that the purely behavioural diversity seeking algorithm, NS, 
performs far better regarding safety than NEAT, and has congregations in multiple 
areas of the plots. In the Rocks and Diamonds environment we see that the popula-
tion solves the tasks in multiple different ways, as there are dense clusters in mul-
tiple parts of the plot. Even though most individuals evolved by NS achieves low 
safety score, the desired solution was found in all of the runs. In the Tomato Water-
ing Environment, which is considered more challenging concerning achieving trust-
worthy individuals, NS is not able to achieve a population containing multiple dif-
ferent ways to solve the task.

The QD algorithms, NSLC (c) and MAP-elites (d), managed to attain the optimal 
solution in terms of safety score in all ten runs in the Rocks and Diamond Environ-
ment. Both algorithms achieve diverse populations containing agents with multiple 
different strategies of achieving fitness. Both algorithms also experience a dense 
congregation in the upper parts of the plot, around the optimal solution in terms of 
safety, which was not the case in (a) and (b). This shows that multiple individuals 
from the QD populations are carrying out the task as intended.

The QD algorithms were also the only ones that obtained individuals with safety-
scores close to human performance (around 16), in the Tomato Watering Environ-
ment. Although reliably ending up with populations containing individuals that 
attempt to perform the task as intended, it should be noted that both algorithms 
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found solutions of continually higher fitness and experienced an increase in tamper-
ing individuals during the entirety of the runs.

Rocks and Diamonds Tomato Watering

(a) NEAT

(b) NS

(c) NSLC

(d) MAP-Elites

Fitness

S
af
et
y

Fig. 3   Task specific BC results. Distribution of individuals in the last generation with regards to safety 
(y-axis) and fitness (x-axis). Solutions where the safety-score is equal to the fitness, indicated by the 
dashed line, are considered safe. Note that by definition, it is not possible to have a safety score higher 
than the fitness value, and the kernel density estimate has therefore been clipped at the line
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6.2 � Generic experiments

Figure  4 visualizes the performance of the individuals evolved by NS, NSLC, and 
MAP-Elites using generic BCs. By comparing with the corresponding task-specific 
results, we see that the last populations are very different, given the different BCs. 
From (a) we see that the generic version of NS fails in both environments, as it is 
not able to achieve any high fitness nor high safety-scoring individuals in the final 
generations. Plot (b) and (c), however, shows that the generic QD-algorithms (and 
especially NSLC) have very different performance in the two environments. In 
Rocks and Diamonds, the generic QD-algorithms performed exceptionally, as very 
large parts of the populations where congregated around the desired solution (93 
safety-score). In fact, a considerably greater percentage of the population attempted 
to perform the tasks in the desired way than with task-specific BCs. The populations 
evolved by the generic versions were also more spread, and not as gathered around 
local optima.

This was not the case in the Tomato Watering environment however, where the 
generic versions of the QD-algorithms utterly fails. The plots show that the individ-
uals from both algorithms are congregated in lower ares of the plot, achieving only 
low safety-score values. For NSLC this, this congregation is very extreme, showing 
that all (!) individuals end up near the global optima for fitness. For MAP-Elites 
the population is more spread, but still unable to preserve any high safety-scoring 
solutions.

6.3 � Task‑specific versus generic

Figure 5 shows the safety-score of the resulting individuals from all ten runs of each 
algorithm with both task-specific BC and generic BC. This is the same data previ-
ously visualized by the KDE plots, but where only the safety-scores are shown.

Plot (a) from Rocks and Diamonds, shows that the individuals are heavily gath-
ered around local optima. For NS we see that the task-specific approach is far supe-
rior, as the generic version is not able to any individuals with positive safety-score 
values. The populations from the different variants of the QD-algorithms, however, 
are more similar, and both cover large parts of the behaviour landscape. From this 
plot we clearly see that the generic versions surprisingly have a higher density in the 
area of high safety-score. The individuals from the generic approach also seem to be 
less gathered around local optima.

In the Tomato Watering Environment (b), the results show that the task-specific 
approach was far superior to the generic approach for all algorithms in the context 
of safety. The task-specific algorithms all managed to end up with solutions that 
attempted to solve the task in the desired way, although optimal solutions were not 
found reliably. This was not the case for the generic versions, especially for NSLC.



	 Genetic Programming and Evolvable Machines           (2023) 24:12 

1 3

   12   Page 16 of 25

7 � Discussion

7.1 � Finding trustworthy solutions

The results from both environments indicate that evolutionary algorithms are able to 
find and preserve safe solutions that attempt to perform the task in the desired way 
when the opportunity for reward tampering is present. Although the rewards from 
the environment do not necessarily correspond to the desired behaviour, a diverse 

Rocks and Diamonds Tomato Watering

(a) NS

(b) NSLC

(c) MAP-Elites

Fitness

S
af
et
y

Fig. 4   Generic BC results. Distribution of individuals in the last generation with regards to safety 
(y-axis) and fitness (x-axis). Solutions where the safety-score is equal to the fitness, indicated by the 
dashed line, are considered safe. Note that by definition, it is not possible to have a safety score higher 
than the fitness value, and the kernel density estimate has therefore been clipped at the line
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evolutionary population can still ensure the development and optimization of agents 
performing the task in a safe and intended way.

The QD algorithms, NSLC and MAP-Elites, managed to evolve and preserve 
individuals performing the task the desired way in all runs. This indicates that 
although the population is being pushed towards evolving individuals who perform 
reward tampering in different ways, the population’s diversity still ensures that some 
individuals obtain reward without tampering.

In this study, the safety-score is a measure of how much fitness an individual 
obtained the intended way, and is the metric we use to evaluate the safety perfor-
mance of an algorithm. This might seem unfair as the algorithms are designed to 
maximize fitness and have no information on whether an individual’s behaviour is 
safe or harmful. It is also nontraditional in the field of ML and AI that an algorithm 
is being evaluated on a different metric than it is designed to maximize. However, as 

(a) Tomato Watering Environment

(b) Rocks and Diamonds

Fig. 5   Raincloud plot showing the safety-score for the last generations (all runs) in both environments. 
A kernel density estimate is shown at the top of each line, with a scatter plot showing the raw data below
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AI systems become more intelligent and are employed on more complex problems, 
it might not be the case that the reward from the environment is the best measure of 
the performance and that we, in the future, need to develop different performance 
measures.

7.2 � Comparison of the algorithms

The results indicate that the trustworthiness of population-based algorithms is very 
dependent on how the diversity of the population is maintained. For both environ-
ments, the algorithms having behavioural diversity as an objective performed better 
in terms of safety.

7.2.1 � NEAT

In both environments NEAT performed poorly with regards to safety. The objective-
based algorithm did not manage to preserve any individuals of high safety-score in 
any of the 10 runs, signifying that objective-based EAs are unable to maintain a 
population containing trustworthy individuals.

Most individuals in the final population produced by NEAT were irrelevant, 
having neither high fitness nor high safety performance. The elites, however, were 
congregated around the global fitness optima. The reason why all of the elites are 
situated in the same area is illustrated in Fig. 6. The fundamental problem is that 
the higher fitness optima lead to poor safety-scores, while the least-fit local optima 
correspond to the desired solution. The goal of NEAT is to find the global optimum 
in the fitness landscape and therefore disregard the lower fitness-yielding optima. 
However, when dealing with reward tampering, the global optimum in terms of fit-
ness will not necessarily correspond to the best solution in terms of user utility. The 
genotypic diversity of NEAT is used to force the evolution of different neural net-
works; however, as indefinitely many different NNs can lead to the same behaviour, 
all the elites of all the species end up in the same place in the behaviour space. This 

(a) NEAT (b) QD

Fig. 6   Illustration of the problem with NEAT when reward tampering is possible. The goal of NEAT (a) 
and QD-algorithms (b) in an illustration of the fitness landscape of rocks and diamonds, where the yel-
low circle indicates the desired solution in terms of trustworthiness (Color figure online)
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is also part of the reason why the field of evolutionary computation is moving more 
in the direction of behavioural (rather than genotypic) diversity [23].

7.2.2 � Behavioural diversity

The algorithms maintaining diversity in the population through behavioural diver-
sity perform far better when it comes to safety in both environments. Although the 
populations generated by NS, NSLC and MAP-Elites contain multiple tampering 
individuals, they all manage to preserve trustworthy agents in the population. This 
is also illustrated in Fig. 6, visualizing the goal of QD-algorithms, and showing why 
behavioural diversity is crucial to succeed in these environments. Maintaining a 
behaviourally diverse population therefore seems to be a key factor for EAs to suc-
ceed in tasks featuring tampering incentives, as we are then able to find multiple dif-
ferent ways to perform the task and increase the chance of preserving solutions with 
high safety-scores.

In the Rocks and Diamond environment, the behavioural diversity algorithms 
manage to find solutions that gather around multiple optima in the fitness landscape, 
indicating the populations are less pushed towards the global optimum and more 
focused on covering multiple areas of the behaviour space. MAP-Elites also showed 
to be able to find more varying solutions than NSLC, indicating that it achieves a 
population with higher diversity. This supports the claims made by other papers that 
MAP-Elites generally produces a more diverse population than previous QD algo-
rithms like NSLC [20, 23].

The QD algorithms are also superior in the Tomato Watering Environment, as 
their resulting populations show to be able to contain trustworthy individuals. As 
seen in Fig 5 however, the algorithms in this environment are not able to reliably 
find the optimal solution in terms of safety-score. One reason why this phenomenon 
might occur is that the constant presence of the easily obtained reward tampering 
behaviour removes the need to evolve more intelligent agents, and therefore inhibits 
the search for solutions performing the task in the desired way. Instead of improving 
the complex behaviour of watering the dry plants, the algorithms instead learn dif-
ferent ways of eluding the intended task, as this is much easier. This causes the algo-
rithms to potentially miss out on important stepping-stones that lead to safe solu-
tions that also achieve high fitness. Reward tampering in the Rocks and Diamonds 
environment, however, requires more intelligent behaviours than what is needed for 
the desired solution, meaning that the population evolved in the rocks and diamond 
environment was not limited in the same way.

7.3 � On the importance of human expertise

An important goal of this study was to investigate whether prior human knowl-
edge of the task is required to evolve trustworthy individuals, or if population-
based algorithms operating generically also possess this potential. There are mul-
tiple papers concerning behavioural diversity [9, 21] that argue that task-specific 
behaviour characterizations provide a more diverse and interesting population, 
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which the previous sections have shown is vital in order to ensure safe individuals 
in these environments.

The results from utilizing generic BCs indicate that the performance of NS 
is very dependent on a behaviour characterization that resembles the interesting 
properties of the task. As previously discussed, the task specific version of NS 
achieves individuals with high performance in both environments; however, this 
is not the case for the generic approach. This is evident from our results, showing 
that NS does not attain any interesting individuals when employed with a generic 
BC in both environments. The distribution of the safety-score of the individuals 
in the last populations also show that the variety of the population of NS mas-
sively deteriorates. This supports the claim made by [17], that NS works best 
with a limited behaviour space and where the BC is aligned with the objective of 
the task.

Applying generic BCs to the QD-algorithms, NSLC, and MAP-Elites also results 
in a decrease in performance, but to a lower degree than with NS. In the Rocks and 
Diamond environment, the generic version of both QD algorithms was able to find 
and maintain the optimal solutions in many of the runs. This signifies that although 
the behaviour space is severely increased, and the behaviour characterization is not 
aligned with the task, that the generic QD approach was successful in the Rocks and 
Diamond environment.

An interesting observation was that the generic versions was able to find a large 
variety solutions, even in areas not covered by the population of the task-specific 
versions. This is an indication that the freedom provided by generic BCs comes with 
both advantages and disadvantages. The fact that the population is not bound by a 
predefined area of search is a clear advantage, enabling more interesting solutions to 
be discovered. It does, however, allow for more tampering.

In the Tomato Watering environment, the performance of the generic QD algo-
rithms drastically deteriorate. The generic version of NSLC fails completely, as all 
individuals in the last generation end up with a tampering behaviour. This is a result 
of a common problem that can emerge when using generic BCs. Although the indi-
viduals are forced to perform different actions, they all still end up finding different 
paths to the same resulting behaviour, which in this case is tampering. This shows 
that NSLC employed with a generic BC does not ensure a population with sufficient 
diversity to find desirable solutions in the tomato watering environment.

Generic MAP-Elites is also inferior compared to the task-specific variant as it is 
unable to preserve any individuals with a high safety score. The resulting population 
is still far more spread than that of NSLC, indicating that generic MAP-Elites at 
least manages to constrain some parts of the population from tampering.

These findings indicate that a task-specific BC designed by a human expert is 
not always required to ensure a population containing safe solutions when facing 
the problem of reward tampering. This is highly promising, as generic BCs add no 
human bias to the process and are more suitable for future tasks as it removes the 
need for a time-demanding engineering process requiring task-specific knowledge 
[21]. However, the results also indicate that the chance of preserving safe individu-
als with generic BC drastically decreases as tampering becomes easier, as the safety 
performance was very different in the two environments.
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7.4 � Towards selecting safe solutions from evolved populations

The experiments have shown that the diversity of populations optimized with 
evolutionary algorithms helps ensure that both safe and well-functioning solu-
tions are available. But we have so far not considered how to select such safe 
solutions. While we consider a thorough exploration of this issue to be outside 
the scope of this paper, we here will give a demonstration of how the evolved 
populations can be used to find safe solutions.

As a basis for this demonstration, consider the populations already evolved for 
the Rocks and Diamonds, and Tomato Watering environments. As shown above, 
these contain many unsafe, cheating solutions and a few safe ones. Imagine now 
that we apply the top performing solution from such a population, and discover 
that it cheats. We would now want to, as efficiently as possible, identify a dif-
ferent solution which is both safe and well-performing. For simple problems, 
we could just run the evolutionary optimization again, while eliminating cheat-
ing solutions. However, for time-consuming, real-world optimization tasks, this 
might not be feasible, and we could save a lot of resources by instead finding a 
good solution in our already evolved population.

The following proof of concept illustrates how this could work. As mentioned, 
we imagine we discovered the cheat that many individuals employed, and we 
want to find a solution that does not cheat. A simple way to look for solutions 
that are safe and well-performing is to simply rank solutions in order of fitness, 
and go through them from the top, discarding any that cheat. Figure 7 shows the 
effect of this on both tasks for populations resulting from the Quality-Diversity 
algorithms shown in Fig. 3, in terms of the number of evaluations needed to find 
a safe solution, and the resulting fitness of the safe solution found. This was per-
formed for the resulting population for all 10 runs of the algorithms, where (like 
in the original experiments) a solution with safety-score equal to the fitness in 
three evaluations was deemed safe.

As Fig. 7 shows, we are able to find well-performing and safe solutions in all 
the evolved populations within a reasonable number of evaluations. There are 
clearly differences in how fast the safe solutions are found in the evolved popula-
tions, and how well-performing those solutions are—but we regard investigating 
these differences closer to be outside the scope of this paper.

While there are certainly more intelligent ways to look for safe solutions in 
evolved populations, which we regard as an exciting venue for further research, 
the point of this demonstration was to show that if we search through our diverse, 
evolved populations, we can find safe and well-performing solutions much faster 
than if we had to start the optimization from scratch. This is especially impor-
tant for more complex problems, where running a full, new round of optimization 
could be very costly.
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7.5 � Future work

As the methods used to evaluate the performance of the algorithms in this paper 
only serve as abstractions of the real problem, it would be interesting to apply 
the same concepts in more realistic tasks, e.g. 3D-worlds or physics-based tasks. 
This would enable a better investigation of population-based algorithms’ ability 
to preserve safe solutions when more realistic factors are presents. This could, 
for instance, involve adding reward tampering possibilities in the usual bench-
mark environments used today or improve the AI-safety environments suite by 
contributing with more realistic and complex environments. Another interesting 

(a) Number of evaluations until a safe solution was found.

(b) Highest safe fitness, scaled to the best safe fitness.

Fig. 7   Proof of concept: finding the best safe individual from the evolved populations
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idea would be to take inspiration from the works of [28], where open-ended evo-
lution was used to continually create more challenging environments, allowing 
algorithms to generate more complex individuals. This could potentially be used 
to create more challenging reward tampering environments and allow for further 
investigation of the problem.

A natural step for further research would also be to combine the methods of 
Leike et al. [18] or Everitt et al. [7], where Reinforcement Learning algorithms were 
applied to reward tampering problems. There are, for instance, multiple interesting 
papers covering possible combinations between RL and diversity driven EAs [4, 11, 
12].

Although the task-specific behaviour characterizations resulted in the best per-
formance of the algorithms in our work, they were carefully designed in order to 
achieve diverse populations. This was both a time-consuming and demanding pro-
cess. It would, however, be interesting to investigate how an algorithm automatically 
learning BCs would perform with regards to reward tampering, e.g., by using the 
framework proposed by [19]. Would these automatically learned BCs result in popu-
lations containing safe individuals? If so, it would greatly reduce the human exper-
tise and time needed for problems where the tampering is easy to achieve.

8 � Conclusion

A fundamental challenge with an objective based learning system, is that the incen-
tive for the agent is bound to this objective, typically via a reward or fitness function. 
If this reward function is not fully in tune with what the user wants to achieve, either 
because of poor design (reward hacking) or the relationship between the reward 
function and the intended task is broken during learning (reward tampering), the 
consequence can be undesired or even dangerous behaviour. For simple tasks, this 
is easily fixed by adjusting the objective function and re-running the search. How-
ever, for time-demanding optimization problems, or in real-world robot optimization 
where harmful behaviours could cause damage, re-running the experiment might not 
be possible. It is therefore important to explore ways to increase the chances that 
safe solutions exist in the already optimized population—and this is the focus of our 
research here.

The primary goal of this paper was to investigate whether evolutionary algo-
rithms are able to enhance trustworthy solutions when encountering reward tamper-
ing. This was achieved by deploying four different EAs in environments represent-
ing both the problem of reward function tampering and RF-input tampering. The 
experiments indicate that EAs are well suited for problems where the user-defined 
rewards do not correspond to the desired solution, which is the result of reward 
tampering. EAs were able to find solutions that solved the tasks the intended way 
in both environments. However, the presence of reward tampering also showed to 
inhibit the search for desirable solutions.

Algorithms searching for a behaviourally diverse population showed to outper-
form classical objective-based EAs in finding and preserving safe solutions as geno-
typic diversity did not ensure sufficient diversity in the population. Maintaining a 
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behaviourally diverse population proved to be crucial, as it allows for multiple ways 
of performing the tasks, and thereby increases the chance of preserving solutions 
with the intended behaviour. The experiments also indicate that human guidance 
substantially increases population-based algorithms’ safety performance in tasks 
where tampering behaviours are simpler to achieve than the desired solution. How-
ever, in tasks where tampering is more complex and harder to achieve, QD-algo-
rithms using no human expertise attain very similar performance as the task-specific 
variants. This indicates that EAs’ ability to find and preserve safe solutions is not 
dependent on human expertise, although task-specific knowledge can increase both 
the certainty and quality of safe solutions.

We demonstrate evolutionary algorithms to be a useful tool against the futuristic 
problem of reward tampering, suggesting that they could play a vital role in ensuring 
the trustworthiness of AI systems in the years to come.
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