
Semi-supervised Gated Recurrent Neural Networks for Robotic Terrain
Classification

Ahmadreza Ahmadi†, Tønnes Nygaard‡, Navinda Kottege†, David Howard†, Nicolas Hudson†

Abstract— Legged robots are popular candidates for missions
in challenging terrains due to the wide variety of locomotion
strategies they can employ. Terrain classification is a key
enabling technology for autonomous legged robots, as it allows
the robot to harness their innate flexibility to adapt their
behaviour to the demands of their operating environment. In
this paper, we show how highly capable machine learning
techniques, namely gated recurrent neural networks, allow
our target legged robot to correctly classify the terrain it
traverses in both supervised and semi-supervised fashions.
Tests on a benchmark data set shows that our time-domain
classifiers are well capable of dealing with raw and variable-
length data with small amount of labels and perform to
a level far exceeding the frequency-domain classifiers. The
classification results on our own extended data set opens up a
range of high-performance behaviours that are specific to those
environments. Furthermore, we show how raw unlabelled data
is used to improve significantly the classification results in a
semi-supervised model.

I. INTRODUCTION

Bio-inspired legged robots offer advantages when walking
in extreme environments with their ability to adapt to instan-
taneous conditions including undulation, slope, roughness,
and terrain types. This is possible by changing gaits, foot-
tip arc shapes, footfall placement, stride length, etc., to tune
their behaviour and overcome the challenges presented by
their environment. Compared to other types of robots, they
have more flexibility to effectively couple their hardware and
software configuration to the specifics of the terrain.

An important step to fully harnessing these myriad degrees
of behavioural freedom is terrain classification; the ability
for a robot to correctly gauge the type of terrain it is on,
and thus enact an appropriate response to overcome the
challenges of that terrain. A plethora of previous approaches
focus on terrain classification with legged robots using
various methods with varying levels of accuracy [1], [2],
[3], [4], [5].

In this work, we focus on the use of modern, highly ca-
pable deep learning methods, namely gated recurrent neural
networks, to perform this classification in both supervised
and semi-supervised schemes. Our main contributions are:

• A deep learning model for terrain classification via
proprioceptive sensing, which significantly outperforms
state of the art frequency-domain approaches.

† A. Ahmadi, N. Kottege, D. Howard, and N. Hudson are
with the Robotics and Autonomous Systems Group, CSIRO, Pullen-
vale, QLD 4069, Australia.All correspondence should be addressed to
ahmadreza.ahmadi@data61.csiro.au
‡T. Nygaard is with the University of Oslo, Norway.

Fig. 1. DyRET quadruped robot on outdoor terrain.

• Comparison of two gated RNN models (LSTMs and
GRUs) for terrain classification

• Extensive testing, both on the previously-introduced
benchmark PUT dataset [6], [7] which covers indoor
terrains, and another large, varied outdoor dataset col-
lected by the authors.

• The first semi-supervised model for robotic terrain
classification capable of dealing with raw and variable-
length data. We show comparable performance to fully
supervised methods, whilst requiring much less anno-
tated data.

This work covers three entries of a recent collection of
Grand Challenges [8] 1. Our approach significantly out-
performs the frequency-domain models in legged terrain
classification [6], and offers the potential for legged robots
to generate high-performance behavioural responses that are
customised to their environments. Moreover, to the best of
our knowledge, this is the first study that investigates a semi-
supervised model that can directly use raw and variable-
length time-series data for robotic terrain classification. Our
dataset2 and code3 are available online.

In the remainder of the paper we discuss background
research (Section II), introduce our target robot and data
sets (Section III), and describe our method and results
in Sections IV and V respectively. We conclude with a
discussion of our results, and directions for future research
in Section VI.

1Biohybrid and bioinspired robots, Navigation and exploration in extreme
environments, and Fundamental aspects of artificial intelligence (AI) for
robotics

2https://doi.org/10.25919/5f88b9c730442
3https://github.com/csiro-robotics/

deep-terrain-classification.git
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II. RELATED WORK

Legged robot locomotion in rough and unstructured terrain
can be addressed either by purely reactive methods or
deliberative methods. Reactive methods [9], [10], [11], [12],
[13] adapt to new terrain types by changing locomotion
parameters or body configuration accordingly. While these
methods typically incur low processing overheads, the actual
adaptation process can be slow as the robot has to walk over
the new terrain for the changes to trigger. Therefore, there is
a risk of the robot entering terrain beyond it’s locomotion
capability before it is identified, potentially stranding the
robot in a local minima.

Deliberative methods first classify the type of terrain, then
switch to appropriate behaviours rather than adapting reac-
tively. The first step in this process is terrain classification
[1], [2], [3], [4], [5]. Proprioceptive sensing and visual per-
ception are often used to gain information about the terrain
through the robots’ joints, force sensors attached to the feet,
inertial measurement units (IMUs), and cameras. These input
sequences are then used in a machine learning framework to
classify the type of terrain the robot is traversing. Methods
based on visual perception may fail in the presence of
large variations in illumination intensity, dust, fog, smoke, or
seasonal changes in color perception, etc. The state of the art
in proprioceptive sensing is dominated by frequency domain
classifiers [14], [6], [15]. Variable length input sequences
are encountered especially with legged robots, e.g., when
the robot walks at different speeds resulting in variable
step frequencies. If this is not addressed, the classification
results will only be valid when the robot is walking through
terrain at the speed used during the training phase. Recent
neural approach [6] used an FFT-based pre-processor to
overcome problems faced by neural network-based methods
when processing variable length sequences.

Recurrent Neural Networks (RNNs) have been widely
used in natural language processing tasks as a next step
predictor, meaning that they predict what comes next in a
sequence [16], [17], [18], [19]. Here, RNNs are used in an
unsupervised paradigm as data labelling is not required dur-
ing training. Semi-supervised learning combines supervised
and unsupervised learning to deal with the major drawback of
supervised models, an extensive reliance on hand-annotated
datasets. Semi-supervised learning has been widely studied
for image classification, natural language processing, and
video prediction, and achieved outstanding results with small
amounts of labelled data [20], [21], [22], [23], [24], [25].

Applications of semi-supervision for robotic terrain clas-
sification are underrepresented in the literature. A semi-
supervised Laplacian Support Vector Machine (SVM) was
recently proposed for a relatively small dataset (1584 sam-
ples for 6 different types of terrains); it was shown that
the proposed method could achieve higher accuracy than a
traditional Laplacian SVM [26]. Ten time-domain features
were used as input, such as number of sign variations in a
sample, sample mean, sample variance, an auto-correlation
function of a sample, an impulse factor, etc. In other words,

the method does not deal with raw data, and requires many
hand crafted features to function. Furthermore, the proposed
method cannot deal with variable-length datasets such as
PUT and QCAT because the length of data needs to be set
in advance to extract time-domain features.

We are therefore motivated to investigate the utilisation
of RNNs as semi-supervised models for robotic terrain clas-
sification, to deal with raw and variable-length time-series
data. We propose a semi-supervised method that incorporates
unsupervised RNNs and supervised RNNs, and test on two
datasets (one indoor, one outdoor). We demonstrate (i) our
time domain representation outperforms recent frequency-
domain representation, and (ii) semi-supervision provides
equivalent performance to state of the art algorithms, whilst
requiring much less labelled data.

III. ROBOTS AND DATASETS

In this section we introduce our robotic test platform,
together with the PUT [6] and QCAT datasets used in the
experimentation. Details of the two datasets are provided in
Table I.

A. PUT Dataset (indoors)

The PUT dataset [6] was collected using a six-legged robot
platform equipped with a Force/Torque sensor on one of its
legs, sampled at 200 Hz. The robot walked at three different
speeds, in six walking directions, on six different artificial
indoor terrains (sand, rubber, concrete, artificial grass, wood
chipping and gravel). Eighty steps are completed for each
combination of speed, direction, and terrain, giving a total
of 8640 steps in the whole dataset.

B. Test Platform

We used the open-source Dynamic Robot for Embodied
Testing (DyRET) platform [27] (Fig. 1) to collect the data.
DyRET is a mammal-inspired robot weighing about 5 kg,
built specifically to facilitate machine learning research on
real-world robots [28]. Control is via position controlled
Robotis servomotors and a high level spline-based gait con-
troller [29]. The robot is equipped with individual directional
force sensors (OptoForce OMD-20-SH-80N) on each foot,
reporting force on three axes at 100 Hz. An Attitude and
Heading Reference System (XSens MTI-30) reports linear
acceleration, rotational velocity and orientation at 100 Hz.

C. QCAT Dataset (outdoors)

The QCAT dataset was collected at different locations on
CSIRO’s QCAT site in Brisbane, Australia, in November
2019. Fig. 2 shows the different environments comprising the
data set: a concrete road, grass, gravel, mulch, a dirt path, and
sand. Data collection involved walking with a fixed gait, but
with three different step frequencies (0.125 Hz, 0.1875 Hz
and 0.25 Hz) and two different step lengths (80 mm and
120 mm), for a total of six different speeds tested per
surface. The robot walks forwards for eight steps, with ten
repeats for a total of 80 steps per speed and surface. To be
representative of the terrain type, each repeat occurs on a



TABLE I
STATISTICS FOR THE TWO DATASETS USED IN THIS PAPER. DYRET IS

SYMMETRIC WITH SENSORS ON BOTH FRONT AND BACK FEET.THE DATA

REPRESENTS BOTH FORWARD AND REVERSE WALKING DIRECTIONS.

QCAT dataset PUT dataset

Number of surfaces 6 6
Number of speeds 6 3
Number of directions *1 6
Sample rate 100 Hz 200 Hz
Number of sensors 4 1
Steps per combination 80 80

Total number of samples 2880 8640
Walking duration 222 min -

different part of the terrain. The dataset consists of the force
senors’ measurements (12 dimensions: 4 sensors ×3) and
the IMU sensor’s measurements (10 dimensions: 3 of linear
accelerations, 3 of angular velocities, and 4 of orientations).

IV. METHOD

Recurrent Neural Networks (RNNs) are a prevalent ma-
chine learning technique for dealing with time-series data.
An RNN takes an external signal xt and the previous hidden
state ht−1 as input, and outputs the current hidden state ht

as:
ht = f(Wxt +Uht−1) (1)

where W and U are learnable parameters and f is a
non-linear activation function. One advantage of RNNs is
their ability to deal with variable-length input sequences.
RNNs are able to learn a distribution over a variable-
length sequence by learning the distribution over the next
input [30]. Early RNN models had difficulties dealing with
long-term dependencies in data [31], [32], which led to
the development of architectures with more direct memory
mechanisms including memory registers, and gated activation
functions replacing simple non-linear activation functions. In
this paper we focus on two popular implementations; Long
Short-Term Memory (LSTM) [33] and Gated Recurrent Unit
(GRU) [30].

A. Long Short-Term Memory

An LSTM cell (Fig. 3a) comprises a memory cell ct, an
input gate it, a forget gate ft, and an output gate ot as:

ht = ot tanh (ct)

ot = σ(Woxt +Uoht−1)

ct = ftct−1 + itc̃t−1

c̃t = tanh (Wcxt +Ucht−1)

ft = σ(Wfxt +Ufht−1)

it = σ(Wixt +Uiht−1)

(2)

The input, forget, and output gates control how much
new information is memorized, how much old information
is forgotten, and how much information is output from the
memory cell, respectively.

B. Gated Recurrent Unit

A GRU unit (Fig.3b) consists of a reset gate rt, and an
update gate zt, which reset and update the memory content
adaptively.

ht = (1− zt)ht−1 + zth̃t

zt = σ(Wzxt +Uzht−1)

h̃t = tanh (Wxt +U(rt � ht−1))

rt = σ(Wrxt +Urht−1)

(3)

where � denotes element-wise multiplication. GRUs can be
considered as an adaptive leaky integrator neuron [34] in
which zt is a user-defined constant value.

C. RNN for Terrain Classification

As shown in previous sections, GRUs have a simpler
structure and fewer learnable parameters, and are therefore
computationally more efficient compared to LSTM. How-
ever, it has been shown that RNN performance critically
depends on the task and dataset [35]. We evaluate both GRUs
and LSTMs on multiple data sets in this paper. Prior work
evaluated LSTMs on the PUT data set, [6], [7] but reports
poor results on the raw data, producing predictions not
much greater than random chance. Instead they developed
methods in the frequency domain [6] with 80.39% accuracy,
and fixed data windowing methods using a one dimensional
Convolutional Neural Networks (CNNs) input layer [7] fed
into LSTMs which achieved 96.89%, at the cost of data
windowing. In our work we rigorously test both GRUs and
LSTMs on the raw PUT dataset without windowing, training
on multiple subsets of the data using k-fold cross-validation
and reliably demonstrate high performance results using our
RNN implementations provided as part of this paper. Prior
work showed results for a single 90/10 train/validation split
(without a holdout test data set or using cross-validation)
in which the model may be overly biased and overfitted.
We show comparable results using k-fold cross-validation
(avoiding bias), without additional efforts to transfer or
window the data.

We also tested LSTMs and GRUs for the QCAT dataset
to see whether gated RNNs can deal with a variable-length
outdoor natural environment dataset. Fig. 4(a) shows how
an RNN can be used for this task. The model takes an
external signal x1:T from time step 1 to T during forward
computation and only outputs y at time-step T . The model
does not need to output at every time-step because the
whole x1:T belongs to one class. This is different from a
regression task where a regression model outputs a different
signal at each time-step. As both datasets have variable-
length sequences, T has a different value for each sequence.
The output y is computed by softmax, which produces a
distribution over the terrain classes. In addition, we tested
semi-supervised RNNs for both datasets to examine their
performances when only a small portion of annotated data
was provided. The proposed model is shown in Fig. 4(b), in
which a classifier model is stacked above a predictor model.



Fig. 2. The different terrains used for collecting our dataset (QCAT). Left to right: Concrete, Grass, Gravel, Mulch, Dirt and Sand.

V. RESULTS

We conducted our experiments to examine how gated
RNNs perform in terrain classification tasks for legged robots
in both supervised and semi-supervised fashions. The first
experiment investigates GRUs and LSTMs for classifying
terrains in the (indoor) PUT dataset, and the second exper-
iment does the same on the outdoor QCAT dataset. The
last experiment examines semi-supervised RNNs for both
datasets. In all experiments, each dimension of the input data
is normalized to zero mean and unit standard variation. The
cross entropy between the ground truth data ŷ and the RNN
output y was used for the loss function as:

Lloss =

C∑
c=1

ŷc log yc (4)

where C is the total class number. An L2 regularization
term for N learnable parameters was also added to the loss
as

Lloss =

C∑
c=1

ŷc log yc + λ

N∑
n=1

θ2 (5)

As neither data set has an independent set of test samples
available, we apply k-fold cross-validation to reduce bias.
Following commonly-used settings, we set k to 5 and 10 in
our experiments [36], [37].

Fig. 3. LSTM and GRU
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Fig. 4. RNNs for terrain classification in a (a) Supervised fashion and
(b) Semi-supervised fashion. Figure (a) shows an unfolded structure of the
RNN model, while figure (b) illustrates the folded RNN models with cyclic
representations. The hp

t and hc
t show the hidden states of the predictor RNN

and the classifier RNN, which are stacked one above the other followed by
a Fully Connected Layer (FCL).

A. RNNs Trained on the PUT Data Set

We evaluated GRUs and LSTMs for classifying the ter-
rains in the PUT dataset. The mean and Standard Deviation
(SD) results of models trained by a simple loss function
(Eq. 4) are shown in Table II. The Minimum (Min) ac-
curacy among k models and Maximum (Max) accuracy
among k models are also given. First, the most standard
and straightforward architectures of GRUs and LSTMs are
compared, then we added more complexity to the supe-
rior RNN to achieve higher accuracy. GRUs consistently
outperform LSTMs, a trend which is repeated for 10-fold
Cross-Validation (CV) models. Ten-fold models are noted to
always have a better mean accuracy than 5-fold CV models.
However, SD values are smaller for some of the 5-fold CV
models. Table III illustrates the results of the models trained
by loss with the L2 regularization term (Eq. 5) in which λ
was set to 0.01. The performance of GRUs is improved by
adding the regularization term, which is not always the case
for LSTMs. One interesting performance is that even small
GRUs (50 units) achieved a respectable 89.47% accuracy.
This can be useful if one wants to use the classifier on
embedded systems where memory efficiency is vital. The
main result of note is that the more complex architecture
(RNNs+FCLs) achieved a mean accuracy of 93.2%, which
is significantly better (12.81%) than the model reported in
[6], and 26.2% better than the best results obtained by a
conventional machine learning algorithm (SVMs), reported
in [6]. The more complex architecture consists of GRUs
plus Fully Connected Layers (FCLs) with dropouts [38],
and learning rate decay was used during its training phase.
The notable network achieved 95.39% maximum accuracy,
whereas its minimum accuracy is 92.06%. This difference
shows the importance of using cross-validation and reporting
mean and standard deviation of all CV models.

The overall results show that RNNs are capable of dealing
with raw PUT data without reducing the temporal size or
transferring from the time-domain to the frequency domain.
Our results therefore suggest that gated RNNs are capable
of dealing with long sequences specially when datasets are
not too complex such as PUT. This also positions GRUs
as a leading candidate for learning terrain classifiers in
this context. We later show the importance of keeping the
temporal resolutions for RNN models (Fig. 6).

Using a straightforward architecture, we show that our
RNN implementation performs significantly better than pre-
viously reported results given the raw data[6], [7]. For
example, 50 LSTMs with no regularization and a fixed
learning rate achieved a mean accuracy of 87.68%, compared
to 18% in the literature.



TABLE II
ACCURACY FOR PUT DATASET. SD, MIN, MAX, AND CV ABBREVIATE

STANDARD DEVIATION, MINIMUM ACCURACY AMONG k RNN MODELS,
MAXIMUM ACCURACY AMONG k RNN MODELS, AND CROSS

VALIDATION, RESPECTIVELY.

Mean% SD% Min% Max%

10-fold CV

50 GRUs 87.68 1.02 85.84 89.06
50 LSTMs 83.68 1.06 81.35 84.99
100 GRUs 90.15 1.11 88.30 91.42

100 LSTMs 85.33 1.39 82.64 87.67
400 GRUs 92.13 0.48 91.42 92.81

400 LSTMs 90.43 0.59 89.6 91.43

5-fold CV

50 GRUs 82.93 1.13 84.93 88.04
50 LSTMs 81.86 0.76 80.47 82.73
100 GRUs 90.2 0.6 89.49 90.94

100 LSTMs 83.98 0.67 83.21 85.2
400 GRUs 91.42 0.77 90.24 92.54

400 LSTMs 89.67 0.74 88.95 91.1

TABLE III
ACCURACY FOR PUT DATASET WITH REGULARIZATION LOSS FOR

TRAINING OF NETWORKS.

Mean% SD% Min% Max%

10-fold CV

50 GRUs 89.47 0.79 88.3 90.77
50 LSTMs 83.63 1.85 81.22 87.34
100 GRUs 90.71 0.87 89.7 92.49

100 LSTMs 85.79 1.64 83.58 88.52
400 GRUs 92.35 0.78 90.67 93.56

400 LSTMs 88.3 1.49 85.74 91.0
RNNs+FCL 93.2 0.89 92.06 95.39

5-fold CV

50 GRUs 88.44 1.06 86.86 90.08
50 LSTMs 83.07 0.46 82.31 83.6
100 GRUs 89.99 0.68 88.95 90.88

100 LSTMs 85.44 0.38 85.09 86.11
400 GRUs 91.91 0.41 91.26 92.38

400 LSTMs 85.34 1.95 83.7 89.06

We suggest two possible reasons for poor performance
observed in previous results. First, variable length sequences
in the PUT dataset use zero-padding, which may perform
poorly in certain (static) RNN implementations. Secondly,
the length of the sequence may not have been made available
to the RNN, which forces common RNN implementations to
revert from dynamic to static, causing the problem identified
above.

Specifically, padded zeros affect both forward computation
and back-propagation through time during training. In Eq. 1,
the value of current hidden states ht depends on values of
both input xt and previous hidden states ht−1, therefore zero
values of input xt will not necessarily result in zero values
of current hidden states ht. This means padded zeros can
deteriorate the performance of RNNs if not handled properly.

B. RNNs Trained on the QCAT Data Set

We evaluated GRUs and LSTMs for classifying the ter-
rains on the outdoor, variable-length QCAT dataset. Mod-
els were trained on data collected by the force sensors
(OptoForce sensors), and the IMU (XSens). IMUs measure
movement and orientation, which is affected by many factors
other than the surface it walks on. It is also susceptible

TABLE IV
CLASSIFICATION ACCURACY FOR QCAT DATASET WITH

REGULARIZATION LOSS FOR TRAINING OF NETWORKS.

Mean% SD% Min% Max%

10-fold CV

50 GRUs 87.71 2.28 84.37 92.01
50 LSTMs 80.56 0.96 78.82 81.94
100 GRUs 89.58 1.24 88.19 92.36

100 LSTMs 82.29 1.15 80.56 84.38
350 GRUs 93.02 1.62 90.97 96.53

350 LSTMs 85.97 1.64 82.29 87.85
RNNs+FCL 96.6 0.89 95.49 98.61

5-fold CV

50 GRUs 86.6 1.54 85.07 89.41
50 LSTMs 81.46 1.64 79.17 83.33
100 GRUs 87.71 1.03 86.46 88.72

100 LSTMs 83.82 1.67 80.9 85.42
350 GRUs 91.28 1.05 90.1 92.88

350 LSTMs 83.19 1.21 81.25 85.07

to noise, which may make the data harder to work with.
Force sensors on the feet are more expensive and mounting
them can be mechanically and electrically challenging. They
are not available on many platforms due to this, but the
advantage is that they are in direct contact with the surface,
which may reduce noise.

Table IV illustrate the results achieved by GRUs and
LSTMs using four force sensors and trained via regularized
loss (Eq. 5). Overall, results follow similar trends to those
observed with the PUT dataset. GRUs again outperforms
LSTMs, and the best network (96.6% of accuracy) belongs
to 10-fold CV models with FCL.

We also consider a robot that relies either on a single
force sensor, or solely on the IMU. As discussed earlier, force
sensors are expensive and many platforms do not have them,
demonstrating our method working with a more accessible,
reduced sensory payload therefore has merit.

We achieved a mean accuracy of 87.74% when using only
one force sensor. Using a cheap IMU sensor (Table V),
we see remarkably high mean accuracy (96.63%) that is
slightly better than the one achieved by the four force
sensors (96.6%). The results suggest that GRUs are capable
of dealing with noise in the input signal, showing that

TABLE V
ACCURACY FOR QCAT DATASET WITH IMU SENSOR WITH

REGULARIZATION LOSS FOR TRAINING OF NETWORKS..

Mean% SD% Min% Max%

10-fold CV

50 GRUs 90.07 1.77 87.5 93.06
50 LSTMs 83.06 2.46 78.82 87.5
100 GRUs 93.06 1.27 91.32 95.49

100 LSTMs 84.44 2.52 78.47 88.19
350 GRUs 94.37 1.68 90.97 96.88

350 LSTMs 85.0 2.11 81.25 88.19
RNNs+FCL 96.63 1.17 94.44 98.26

5-fold CV

50 GRUs 88.61 1.11 87.15 90.28
50 LSTMs 80.83 1.43 78.47 82.64
100 GRUs 90.63 1.29 88.19 92.01

100 LSTMs 83.23 1.02 81.6 84.55
350 GRUs 92.7 0.87 91.32 93.92

350 LSTMs 84.03 2.17 82.12 87.33



5 10 15 20 25
Label Percentage

45

50

55

60

65

70

75

80

85

90

95

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Supervised
Semi-supervised FE
Semi-supervised FE+FT
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(b) QCAT results

Fig. 5. Comparison of test results between supervised learning and two
types of semi-supervised learning. The arrows show the standard deviations.
The semi-supervised algorithms significantly outperform the supervised
algorithm for both datasets, specially when the percentage of the label data is
small. The semi-supervised learning with feature extraction and fine tuning
has a superior performance than the semi-supervised one with only feature
extraction.

our classification models are widely applicable across many
robot platforms. Trends are consistent with previous results
obtained using force sensors. Notably, more of the 5-fold
CV models had less variance than the 10-fold CV models.
We also investigated the models given both IMU and force
inputs and observed that they could achieve the accuracy
of 97.64 ± 1.03%. Given the remarkable accuracy obtained
by IMU or force sensors, it does not seem necessary to
have both types of sensors for robotic terrain classification,
although more investigations are required to ascertain the
limits of this, or applicability to different types of robots.

C. Semi-supervised learning

As shown for both PUT and QCAT datasets, supervised
RNNs achieved high accuracy for classifying the different
terrains. However, the process of data collection for super-
vised models is tedious. For data annotation, either the robots
need to walk on different types of terrains separately or
one needs to hand-label the data later on. The effort can
be reduced if only a portion of data needs to be annotated
for comparable performance. To that end, we proposed semi-
supervised RNNs for the terrain classification to investigate
the possibility of reducing hand-labeling efforts.

In the proposed semi-supervised model, we stacked un-

supervised RNNs, supervised RNNs, and Fully Connected
Layer (FCL) neural networks (Fig. 4(b)). First, the unsuper-
vised RNNs, also referred as the predictor RNNs, are trained
by taking the current signal xt (Force/Torque signals for
PUT and IMU signals for QCAT) as input and predicting the
next step signal xt+1 in their outputs. A portion of input data
(predicting data) was used for training of the predictor RNNs.
This method of training is called unsupervised learning
because the target signals are provided by input signals them-
selves and no human efforts for data annotations are needed.
After training, the weights are frozen and the supervised
RNNs, also referred as the classifier RNNs, and the FCL are
trained by using other portion of the data (classifying data).
The classifier models take the predictor RNN outputs as input
and estimating the outputs y, types of terrains, at time-step
T . We refer to this model as Feature Extracting (FE) semi-
supervised learning because the predictor RNNs were used
as feature extractor. We also investigated fine-tuning of the
whole FE semi-supervised learning model by decreasing the
learning rate and retraining the whole model with classifying
data. This model is referred as Feature Extracting (FE)
+ Fine Tuning (FT) semi-supervised learning model. Both
models are compared on PUT and QCAT datasets. For
sake of space and given that GRUs outperformed LSTMs
in all previous experiments, only GRUs are used in the
following experiments. IMU data is only used for the QCAT
dataset given our previous promising results with this cheap,
available sensor.

We investigated 5 different splits of predicting/classifying
data. In Fig. 5, 5% means that the whole dataset was
randomly divided into two sections: 90% of data was used
as the predicting data and the remainder was classifying
data. Using 2-fold cross-validation to lower classifier bias,
the classifying data (10% of the whole data) was randomly
split into 2 parts. Therefore, the supervised model (classifier
RNNs and FCL) was only trained by 5% of the whole data,
and evaluated on the other 5%. As 5% of the data was used
for training of the supervised model, we called these models
’5%’. We tested the classifiers on the rest 90% of the whole
data, which are referred as test accuracy. Similarly, ’25%’
means that the whole dataset was randomly divided into two
sections: 50% predicting data and 50% classifying data. All
networks were trained by 25% of the data, evaluated on 25%,
and tested on 50%. In order to compare the semi-supervised
models with supervised models and show the effect of the
predictor RNNs in the semi-supervised models, we trained
supervised classifiers using the classifying data.

Test accuracy results (Fig. 5) shows the superior perfor-
mance of semi-supervised models over supervised models.
The gap between their percentage accuracy is significantly
larger for a smaller amount of labels, and becomes smaller as
more labels are provided during training. Supervised model
accuracy are relatively low (49.31% and 61.85%) when
networks are trained by 5% and 10% labels, possibly because
QCAT is a relatively small dataset. The effect is less evident
for PUT, which is larger.

Results show the effectiveness of fine-tuning for semi-



Fig. 6. Principle component analysis of GRU hidden states given 720 testing samples at different time-steps. The points belonging to the same class have
clustered together as time evolves. Some classes (sand and concrete) seem to be easier for the RNN model to classify than others, specifically mulch, dirt,
and gravel.

supervised learning, as those models outperform the FE
semi-supervised models in all cases. Accuracy is slightly
lower for 25% (92.24% accuracy) than 20% (91.86% accu-
racy) for PUT dataset, and it is really close for QCAT. This
is likely because predictor RNNs are trained on less data
(50%) for the former model, although its classifier model
had access to 5% more labels, suggesting that a balance
between amounts of training data for the supervised and
unsupervised model may be needed to achieve the highest
possible accuracy using semi-supervised models. The overall
results indicate that semi-supervised learning is an effective
learning method when few labels are available, addressing
a major shortcoming of supervised learning, especially for
terrain classification where extensive annotations may be
difficult to procure .

We visualised the temporal evolution of hidden states
of a GRU given 720 testing samples of different lengths
(T ). Principal Component Analysis (PCA) reduced the GRU
hidden state dimension (200 GRU units) to two principle
components. Fig. 6 displays the PCA results at time-step t
= 10%T , 40%T , 70%T and T for QCAT dataset. The dirt,
mulch, and gravel classes are seen to bethe most challenging
ones for the network due to similarities between these three
classes (Fig. 2). Sand and concrete are the most separable
classes for the network due to their contrasting mechanical
properties. The figure also shows how the hidden states of
the same classes are mostly clustered together as time goes
by. This emphasizes the importance of the data temporal
resolution for the terrain classification task.

We investigated other possible architectures for semi-
supervised learning, which have been shown to be effective
in tasks such as image classification or NLP. Our first
approach replaced predictor RNNs with fully connected
layers. Second, we removed the predictor RNNs, pre-trained
RNNs and fully connected layers for the one-step prediction
task, and fine-tune the whole network for the classification
task. We also replaced the predictor RNNs with auto-encoder
RNNs, meaning that the unsupervised RNNs were trained
on the current signal xt (Force/Torque signals for PUT
and IMU signals for QCAT) and predicted the the same
time step signal xt. Preliminary results suggest that non of

the aforementioned semi-supervised methods are effective
for the robotic terrain classifications (PUT and QCAT),
they under-performed the supervised models, although more
detailed analysis and investigations are needed to have a
conclusive statement.

VI. CONCLUSIONS

We utilized supervised and semi-supervised gated RNNs
for the robotic terrain classification. Our classifiers were
first evaluated on the PUT dataset composed of time-series
data with variable lengths that were collected in an indoor
environment. RNN models given time-series dataset signif-
icantly exceeded the accuracy rates of the SVM and the
fully connected neural model using frequency-domain trans-
ferred data. Furthermore, we achieved high accuracy rates
by RNN classifiers on our own dataset composed of time-
series data with variable lengths that were collected in an
outdoor environment. The results obtained from both datasets
suggest that a GRU outperforms LSTM for proprioceptive
terrain classification. The results also show the importance
of the data temporal resolution for terrain classification.
In the second experiment, we showed that IMU sensors,
available on many robot platforms, may be a sensor of
choice for terrain classification. We introduced the first deep
semi-supervised models for robotic terrain classification, and
showed that they are capable of directly dealing with raw
and variable-length time-series data. Results indicate that
semi-supervised models outperformed supervised models re-
markably when only small amounts of annotated data are
available, suggesting that less annotated data is required for
terrain classification, and thus larger usable data sets can be
easily made available. The results open up an interesting
future extension of the current work: a transfer learning
between robot platforms, meaning that a different robot
will be used for training the unsupervised model with no
annotated data. Another interesting future work can be to
investigate probabilistic RNNs as semi-supervised models for
robotic terrain classification. Probabilistic RNNs [39], [40],
[41] are known to attain better generalization capabilities
than deterministic ones specially for dealing with data with
high variability as evidenced in this domain.
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